

November 03, 2005

Stephen Knuttel SCS Engineers 3645 Westwind Blvd Santa Rosa, CA 95403

Dear Stephen,

Enclosed you will find Analytical Sciences' final report 5102404 for your J.E. McCaffrey project. An invoice for this work is enclosed.

Should you or your client have any questions regarding this report please contact me at your convenience. We appreciate you selecting Analytical Sciences for this work and look forward to serving your analytical chemistry needs on projects in the future.


Sincerely,

Analytical Sciences

Mark A. Valentini, Ph.D.

Mark A. Valentini

Laboratory Director

Report Date: November 03, 2005

Laboratory Report

Stephen Knuttel SCS Engineers 3645 Westwind Blvd Santa Rosa, CA 95403

Project Name: J.E. McCaffrey 01203335.00

Lab Project: **5102404**

This 4 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D.

Laboratory Director

P.O. Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

Lab Project#: 5102404

Volatile Hydrocarbons by GC/MS in Water

Lab#	Sample ID	Compo	und Name		Result (ug/L)	RDL (ug/L)
5102404-01	DW-376	Benzen	e		ND	1.0
		Toluene	e		ND	1.0
		Ethylbe	enzene		ND	1.0
		m,p-Xy	lene		ND	1.0
		o-Xyler	ne		ND	1.0
		Tertiary	Butyl Alcohol (7	ГВА)	ND	25
		Methyl	tert-Butyl Ether (MTBE)	11	1.0
		Di-isop	ropyl Ether (DIPI	Ε)	ND	1.0
		Ethyl te	ert-Butyl Ether (E'	ТВЕ)	ND	1.0
		Tert-Ar	nyl Methyl Ether	(TAME)	ND	1.0
Sur	rogates	Result (ug/L)	% Recove	ery	Acceptance Range	e (%)
Dibromofluorom	ethane	20.9	104		70-130	
Toluene-d8		20.9	104		70-130	
4-Bromofluorobe	enzene	20.6	103		70-130	
Date Sampled:	10/21/05		Date Analyzed:	10/26/05	QC	C Batch: B000218
Date Received:	10/24/05		Method:	EPA 8260B		

Quality Assurance Report

Volatile Hydrocarbons by GC/MS in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000218 - EPA 5030 GC/MS										
Blank (B000218-BLK1)				Prepared	& Analyz	zed: 10/17	7/05			
Benzene	ND	1.0	ug/L	•	•					
Toluene	ND	1.0	ug/L							
Ethylbenzene	ND	1.0	ug/L							
m,p-Xylene	ND	1.0	ug/L							
o-Xylene	ND	1.0	ug/L							
Tertiary Butyl Alcohol (TBA)	ND	25	ug/L							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	ug/L							
Di-isopropyl Ether (DIPE)	ND	1.0	ug/L							
Ethyl tert-Butyl Ether (ETBE)	ND	1.0	ug/L							
Tert-Amyl Methyl Ether (TAME)	ND	1.0	ug/L							
Surrogate: Dibromofluoromethane	26.1		ug/L	20.0		130	70-130			
Surrogate: Toluene-d8	19.3		ug/L	20.0		96	70-130			
Surrogate: 4-Bromofluorobenzene	18.5		ug/L	20.0		92	70-130			
Matrix Spike (B000218-MS1)		ource: 5101404	1-09	Prepared	& Analyz	zed: 10/17	7/05			
1,1-Dichloroethene (1,1-DCE)	23.5	1.0	ug/L	25.0	ND	94	70-130			
Benzene	21.5	1.0	ug/L	25.0	ND	86	70-130			
Trichloroethene (TCE)	21.9	1.0	ug/L	25.0	ND	88	70-130			
Toluene	21.5	1.0	ug/L	25.0	ND	86	70-130			
Chlorobenzene	21.9	1.0	ug/L	25.0	ND	88	70-130			
Surrogate: Dibromofluoromethane	19.8		ug/L	20.0		99	70-130			
Surrogate: Toluene-d8	19.9		ug/L	20.0		100	70-130			
Surrogate: 4-Bromofluorobenzene	19.0		ug/L	20.0		95	70-130			
Matrix Spike Dup (B000218-MSD1)	So	ource: 5101404	1-09	Prepared	& Analyz	zed: 10/17	//05			
1,1-Dichloroethene (1,1-DCE)	20.2	1.0	ug/L	25.0	ND	81	70-130	15	20	
Benzene	21.8	1.0	ug/L	25.0	ND	87	70-130	1	20	
Trichloroethene (TCE)	22.0	1.0	ug/L	25.0	ND	88	70-130	0	20	
Toluene	22.6	1.0	ug/L	25.0	ND	90	70-130	5	20	
Chlorobenzene	22.1	1.0	ug/L	25.0	ND	88	70-130	0	20	
Surrogate: Dibromofluoromethane	18.5		ug/L	20.0		92	70-130			
Surrogate: Toluene-d8	20.8		ug/L	20.0		104	70-130			
Surrogate: 4-Bromofluorobenzene	20.0		ug/L	20.0		100	70-130			

Lab Project#: 5102404 CA Lab Accreditation #: 2303

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

Analytical Sciences
P.O. Box 750336, Petaluma, CA 94975-0336
110 Liberty Street, Petaluma, CA 94952
(707) 769-3128

CHAIN OF CUSTODY LAB PROJECT NUMBER: STORY OF

	CLIENT INFORMATION	ORMAT	NOI			BILLING INFORMATION	VG I	NFOR	MATI	NO		S	S ENC	SCS ENGINEERS PROJECT NAME:	PROJ	ECT NA		JE McCaffery	Caffery	
Co	COMPANY NAME: SCS ENGINEERS	NGINEERS				CONTACT:	if ::	Jim McCaffery	ıffery			scs	ENGIN	SCS ENGINEERS PROJECT NUMBER:	ROJEC	T NUME	ER:	01203335.00	35.00	
	ADDRESS: 3645 WESTWIND BOULEVARD	VESTWIND	BOULE	/ARD	COMP	COMPANY NAME:		E McCa	JE McCaffery Co.	١,			TURN	TURNAROUND	T QNI	TIME (c	(check one)	one)	GEOTRACKER EDF: X	N Y
	SANTA	SANTA ROSA, CA 95403	9540	3		ADDRESS:		365 Todd Road	Road			Moe	MOBILE LAB		П				GLOBAL ID: T0609700270	0270
	CONTACT: Stephen Knuttel	Knuttel					S	unta Ros	Santa Rosa, CA 95407	5407		'S	SAME DAY	Ų		24	24 Hours		COOLER TEMPERATURE	
	PHONE#: (707) 546-9461	46-9461				PHONE#:	1	707-769-4412	412			4	48 Hours	Щ		721	72 Hours		ρ	
	FAX #: (707) 5	(707) 544-5769				FAX #:							5 DAYS	Щ	П	ž	NORMAL	2	7 000	
												ANALYSIS	YSIS						PAGE1_ OF1_	1
ПЕМ	CLIENT SAMPLE ID.	DATE SAMPLED	TIME	MATRIX	CONT.	PRESV.	TPH/GAS/BTEX EPA 8015M/8020	/ Jacaby Jio gotom M&f08 Aqa	VOLATILE HYDROCARBONS EPA 8260 (FULL LIST)	EPA 8260 Full List + Oxy / Fuel Additives	BTEX & OXYGENATES + PR SCAVENCERS EPA 8260B OXYGENATED	FUEL ADDITIVES EPA 8260M CHLORINATED	SOLVENTS SEMI-VOLATILE	НҮРКОСАКВОИS EA 8270 TRPH / TOG	SM 5520F / EPA 418.1M	EPA 8081 / 8141 / 8082 CAM 17 METALS / 5 LUFT METALS / 5 LUFT METALS	TOTAL LEAD	Natural Attenuation	COMMENTS	LAB SAMPLE #
-	DW-376	10\$31 0\$330	330	DIT	3.5	Yes					×								5102404-	01
7					toral	buller														
3																				
4																				
2																				
9																				
7																				
8																				
6																				
10																				
1																				
	Ĺ								SIGN	SIGNATURES	SE									
REL	RELINQUISHED BY:	MAN	in		DATE::			TIME:				'	1							t
REC	RECEIVED BY:	200			DATE::			TIME:			8	SERVE	BYL	RECEIVED BY LABORATORY:	ORY					
REL	RELINQUISHED BY:				DATE::			TIME:			/	7	1		1				10/42/01	11-30
REC	RECEIVED BY:				DATE:			TIME:			Sig	SIGNATURE							DATE	TIME

November 03, 2005

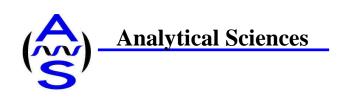
Stephen Knuttel SCS Engineers 3645 Westwind Blvd Santa Rosa, CA 95403

Dear Stephen,

Enclosed you will find Analytical Sciences' final report 5102405 for your J.E. McCaffrey project. An invoice for this work is enclosed.

Should you or your client have any questions regarding this report please contact me at your convenience. We appreciate you selecting Analytical Sciences for this work and look forward to serving your analytical chemistry needs on projects in the future.

Sincerely,


Analytical Sciences

Mark A. Valentini, Ph.D.

Mark A. Valentini

Laboratory Director

P.O. Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

Report Date: November 03, 2005

Laboratory Report

Stephen Knuttel SCS Engineers 3645 Westwind Blvd Santa Rosa, CA 95403

Project Name: J.E. McCaffrey 01203335.00

Lab Project: **5102405**

This 4 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D.

Laboratory Director

P.O. Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

Lab Project#: 5102405

Volatile Hydrocarbons by GC/MS in Water

Toluene ND 1. Ethylbenzene ND 1. m,p-Xylene ND 1. o-Xylene ND 1. Tertiary Butyl Alcohol (TBA) ND 25 Methyl tert-Butyl Ether (MTBE) 28 1.	1.0 1.0 1.0 1.0 1.0
Ethylbenzene ND 1. m,p-Xylene ND 1. o-Xylene ND 1. Tertiary Butyl Alcohol (TBA) ND 25 Methyl tert-Butyl Ether (MTBE) 28 1.	1.0 1.0 1.0
m,p-Xylene ND 1. o-Xylene ND 1. Tertiary Butyl Alcohol (TBA) ND 25 Methyl tert-Butyl Ether (MTBE) 28 1.	1.0 1.0
o-Xylene ND 1. Tertiary Butyl Alcohol (TBA) ND 25 Methyl tert-Butyl Ether (MTBE) 28 1.	1.0
Tertiary Butyl Alcohol (TBA) ND 25 Methyl tert-Butyl Ether (MTBE) 28 1.	
Methyl tert-Butyl Ether (MTBE) 28 1.	5
· · · · · · · · · · · · · · · · · · ·	
Di icopropul Ethar (DIDE) ND 1	1.0
Di-isopiopyi Eulei (DIPE) ND 1.	1.0
Ethyl tert-Butyl Ether (ETBE) ND 1.	1.0
Tert-Amyl Methyl Ether (TAME) ND 1.	1.0
Surrogates Result (ug/L) % Recovery Acceptance Range (%)	
Dibromofluoromethane 20.1 100 70-130	
Toluene-d8 19.9 100 70-130	
4-Bromofluorobenzene 19.0 95 70-130	
Date Sampled: 10/21/05 Date Analyzed: 10/28/05 QC Batch: B000	0218
Date Received: 10/24/05 Method: EPA 8260B	

Quality Assurance Report

Volatile Hydrocarbons by GC/MS in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000218 - EPA 5030 GC/MS										
Blank (B000218-BLK1)				Prepared	& Analyz	zed: 10/17	7/05			
Benzene	ND	1.0	ug/L	•	•					
Toluene	ND	1.0	ug/L							
Ethylbenzene	ND	1.0	ug/L							
m,p-Xylene	ND	1.0	ug/L							
o-Xylene	ND	1.0	ug/L							
Tertiary Butyl Alcohol (TBA)	ND	25	ug/L							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	ug/L							
Di-isopropyl Ether (DIPE)	ND	1.0	ug/L							
Ethyl tert-Butyl Ether (ETBE)	ND	1.0	ug/L							
Tert-Amyl Methyl Ether (TAME)	ND	1.0	ug/L							
Surrogate: Dibromofluoromethane	26.1		ug/L	20.0		130	70-130			
Surrogate: Toluene-d8	19.3		ug/L	20.0		96	70-130			
Surrogate: 4-Bromofluorobenzene	18.5		ug/L	20.0		92	70-130			
Matrix Spike (B000218-MS1)		ource: 5101404	1-09	Prepared	& Analyz	zed: 10/17	7/05			
1,1-Dichloroethene (1,1-DCE)	23.5	1.0	ug/L	25.0	ND	94	70-130			
Benzene	21.5	1.0	ug/L	25.0	ND	86	70-130			
Trichloroethene (TCE)	21.9	1.0	ug/L	25.0	ND	88	70-130			
Toluene	21.5	1.0	ug/L	25.0	ND	86	70-130			
Chlorobenzene	21.9	1.0	ug/L	25.0	ND	88	70-130			
Surrogate: Dibromofluoromethane	19.8		ug/L	20.0		99	70-130			
Surrogate: Toluene-d8	19.9		ug/L	20.0		100	70-130			
Surrogate: 4-Bromofluorobenzene	19.0		ug/L	20.0		95	70-130			
Matrix Spike Dup (B000218-MSD1)	So	ource: 5101404	1-09	Prepared	& Analyz	zed: 10/17	//05			
1,1-Dichloroethene (1,1-DCE)	20.2	1.0	ug/L	25.0	ND	81	70-130	15	20	
Benzene	21.8	1.0	ug/L	25.0	ND	87	70-130	1	20	
Trichloroethene (TCE)	22.0	1.0	ug/L	25.0	ND	88	70-130	0	20	
Toluene	22.6	1.0	ug/L	25.0	ND	90	70-130	5	20	
Chlorobenzene	22.1	1.0	ug/L	25.0	ND	88	70-130	0	20	
Surrogate: Dibromofluoromethane	18.5		ug/L	20.0		92	70-130			
Surrogate: Toluene-d8	20.8		ug/L	20.0		104	70-130			
Surrogate: 4-Bromofluorobenzene	20.0		ug/L	20.0		100	70-130			

Lab Project#: 5102405 CA Lab Accreditation #: 2303

Notes and Definitions

(1) The following additional compound was detected: Vinyl Chloride (1.4 ug/l)

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference


Lab Project#: 5102405 CA Lab Accreditation #: 2303

Analytical Sciences
P.O. Box 750336, Petaluma, CA 94975-0336
110 Liberty Street, Petaluma, CA 94952
(707) 769-3128

CHAIN OF CUSTODY LAB PROJECT NUMBER: 5102405

																		,	, , ,	
	CLIENT INFORMATION	ORMAT	ION			BILLI	NG	NFOF	LLING INFORMATION	ION		Š.	SCS ENGINEERS PROJECT NAME:	NEERS	PROJE	CT NAM		JE McCaffery	fery	
COM	COMPANY NAME: SCS EN	SCS ENGINEERS		,		CONTACT:		Jim McCaffery	affery			SCS	SCS ENGINEERS PROJECT NUMBER:	ERS PR	OJECT	NUMBE		01203335.00	00	
	ADDRESS: 3645 WESTWIND BOULEVARD	/ESTWIND	Boule	VARD	COMPANY	ANY NAME:	1	JE McCaffery	ffery Co.	.			TURNAROUND TIME	ROUN	IIT QI		(check one)	ne)	GEOTRACKER EDF: X	N ×
	SANTA	SANTA ROSA, CA 95403	1 9540	က္		ADDRESS:	1	365 Todd Road	Road			MoE	MOBILE LAB		П				GLOBAL ID: T0609700270	0270
	CONTACT: Stephen Knuttel	Knuttel					S	ınta Ro	Santa Rosa, CA 95407	5407		Ŝ	SAME DAY			24 Hours	URS		COOLER TEMPERATURE	
	PHONE#: (707) 546-9461	46-9461				PHONE#:		707-769-4412	412			4	48 Hours	Ц		72 Hours	URS		ပ	
	FAX#: (707) 544-5769	44-5769				FAX #:							5 DAYS	Ш	П	Non	NORMAL	7	202	
												ANALYSIS	YSIS						PAGE1 OF1_	I
ТЕМ	CLIENT SAMPLE ID.	DATE SAMPLED	TIME	MATRIX	CONT.	PRESV.	X3T8\&A2\H9T 0208\M3108 A93	TPH DIESEL / MOTOR OIL EPA 8015M	VOLATILE HYDROCARBONS EPA \$260 (FULL LIST)	EPA 8260 Full List + Oxy / Fuel Additives	BTEX & OXYGENATES +PS SGAVENCERS EPA 8260B OXYGENATED	FUEL ADDITIVES EPA 8260M CHLORINATED	SOLVENTS SEMI-VOLATILE HYDROCARBONS	EPA 8270 TRPH / TOG SM 5520F / EPA 418.1M	PESTICIDES / PCB'S PPA 8081 / 8141 / 8082	CAM 17 METALS / 5 LUFT METALS	DABL LEAD	Natural Attenuation	COMMENTS	LAB SAMPLE #
-	DW-369	10/21/05 1143	1143	LIQ	3	Yes					×								5102405 -	0.1
2		-																		
က																				
4														14						
2				\																
9								3												
7																				
8				5-				*												
6																				
10																			-	
11							2													
									SIGN	SIGNATURES	SE									
RELI	RELINGUISHED BY:	11/1/			DATE::			TIME:										1.		
RECE	RECEIVED BY:	2			DATE::			TIME:	5.1		æ	ECEIVED	RECEIVED BY LABORATORY:	SORATO	RX:					
RELI	RELINQUISHED BY:				DATE::			TIME:				\)	(20/12/01	1130
RECE	RECEIVED BY:				DATE:			TIME:			Sig	SIGNATURE		-					DATE	TIME
										Name and Address of the Owner, where the Owner, which is the Owner, which is the Owner, where the Owner, which is the Owner,				1	1					Distance of the last of the la

November 03, 2005

Stephen Knuttel SCS Engineers 3645 Westwind Blvd Santa Rosa, CA 95403

Dear Stephen,

Enclosed you will find Analytical Sciences' final report 5102406 for your J.E. McCaffrey project. An invoice for this work is enclosed.

Should you or your client have any questions regarding this report please contact me at your convenience. We appreciate you selecting Analytical Sciences for this work and look forward to serving your analytical chemistry needs on projects in the future.


Sincerely,

Analytical Sciences

Mark A. Valentini, Ph.D.

Laboratory Director

P.O. Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

Report Date: November 03, 2005

Laboratory Report

Stephen Knuttel SCS Engineers 3645 Westwind Blvd Santa Rosa, CA 95403

Project Name: J.E. McCaffrey 01203335.00

Lab Project: **5102406**

This 4 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D.

Laboratory Director

P.O. Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

Lab Project#: 5102406

Volatile Hydrocarbons by GC/MS in Water

Lab#	Sample ID	Compo	und Name		Result (ug/L)	RDL (ug/L)
5102406-01	DW-330	Benzen	ie		ND	1.0
		Toluene	e		ND	1.0
		Ethylbe	enzene		ND	1.0
		m,p-Xy	lene		ND	1.0
		o-Xyler	ne		ND	1.0
		Tertiary	y Butyl Alcohol (T	TBA)	ND	25
		Methyl	tert-Butyl Ether (MTBE)	16	1.0
		Di-isop	ropyl Ether (DIPE	E)	ND	1.0
		Ethyl te	ert-Butyl Ether (E	ГВЕ)	ND	1.0
		Tert-Ar	myl Methyl Ether	(TAME)	ND	1.0
Surr	ogates	Result (ug/L)	% Recove	ery	Acceptance Range (%)
Dibromofluorome	thane	18.6	93		70-130	
Toluene-d8		22.3	112		70-130	
4-Bromofluorober	nzene	20.2	101		70-130	
Date Sampled:	10/21/05		Date Analyzed:	10/25/05	QC B	atch: B000218
Date Received:	10/24/05		Method:	EPA 8260B		

Quality Assurance Report

Volatile Hydrocarbons by GC/MS in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000218 - EPA 5030 GC/MS										
Blank (B000218-BLK1)				Prepared	& Analyz	zed: 10/17	7/05			
Benzene	ND	1.0	ug/L	•	•					
Toluene	ND	1.0	ug/L							
Ethylbenzene	ND	1.0	ug/L							
m,p-Xylene	ND	1.0	ug/L							
o-Xylene	ND	1.0	ug/L							
Tertiary Butyl Alcohol (TBA)	ND	25	ug/L							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	ug/L							
Di-isopropyl Ether (DIPE)	ND	1.0	ug/L							
Ethyl tert-Butyl Ether (ETBE)	ND	1.0	ug/L							
Tert-Amyl Methyl Ether (TAME)	ND	1.0	ug/L							
Surrogate: Dibromofluoromethane	26.1		ug/L	20.0		130	70-130			
Surrogate: Toluene-d8	19.3		ug/L	20.0		96	70-130			
Surrogate: 4-Bromofluorobenzene	18.5		ug/L	20.0		92	70-130			
Matrix Spike (B000218-MS1)		ource: 5101404	1-09	Prepared	& Analyz	zed: 10/17	7/05			
1,1-Dichloroethene (1,1-DCE)	23.5	1.0	ug/L	25.0	ND	94	70-130			
Benzene	21.5	1.0	ug/L	25.0	ND	86	70-130			
Trichloroethene (TCE)	21.9	1.0	ug/L	25.0	ND	88	70-130			
Toluene	21.5	1.0	ug/L	25.0	ND	86	70-130			
Chlorobenzene	21.9	1.0	ug/L	25.0	ND	88	70-130			
Surrogate: Dibromofluoromethane	19.8		ug/L	20.0		99	70-130			
Surrogate: Toluene-d8	19.9		ug/L	20.0		100	70-130			
Surrogate: 4-Bromofluorobenzene	19.0		ug/L	20.0		95	70-130			
Matrix Spike Dup (B000218-MSD1)	So	ource: 5101404	1-09	Prepared	& Analyz	zed: 10/17	//05			
1,1-Dichloroethene (1,1-DCE)	20.2	1.0	ug/L	25.0	ND	81	70-130	15	20	
Benzene	21.8	1.0	ug/L	25.0	ND	87	70-130	1	20	
Trichloroethene (TCE)	22.0	1.0	ug/L	25.0	ND	88	70-130	0	20	
Toluene	22.6	1.0	ug/L	25.0	ND	90	70-130	5	20	
Chlorobenzene	22.1	1.0	ug/L	25.0	ND	88	70-130	0	20	
Surrogate: Dibromofluoromethane	18.5		ug/L	20.0		92	70-130			
Surrogate: Toluene-d8	20.8		ug/L	20.0		104	70-130			
Surrogate: 4-Bromofluorobenzene	20.0		ug/L	20.0		100	70-130			

Lab Project#: 5102406 CA Lab Accreditation #: 2303

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

Analytical Sciences
P.O. Box 750336, Petaluma, CA 94975-0336
110 Liberty Street, Petaluma, CA 94952
(707) 769-3128

CHAIN OF CUSTODY

GLOBAL ID: T0609700270 GEOTRACKER EDF: X Y COOLER TEMPERATURE 200 JE McCaffery SCS ENGINEERS PROJECT NUMBER: 01203335.00 TURNAROUND TIME (check one) 24 Hours NORMAL 72 Hours SCS ENGINEERS PROJECT NAME: LAB PROJECT NUMBER: MOBILE LAB 48 Hours 5 DAYS SAME DAY BILLING INFORMATION Santa Rosa, CA 95407 JE McCaffery Co. 365 Todd Road CONTACT: Jim McCaffery 707-769-4412 COMPANY NAME: ADDRESS: PHONE#: FAX #: ADDRESS: 3645 WESTWIND BOULEVARD SANTA ROSA, CA 95403 **CLIENT INFORMATION** COMPANY NAME: SCS ENGINEERS FAX #: (707) 544-5769 PHONE#: (707) 546-9461 CONTACT: Stephen Knuttel

											_		Fire Control				
	LAB SAMPLE #	10														1130	TIME
PAGE1 0F1	COMMENTS	- 9017015													***	10/2/01	DATE
	noitennatiA letuteN																l
	DABL LEAD																
	CAM 17 METALS / \$ LUFT METALS																
	EPA 8081 / 8141 / 8082														:X		
	TRPH / TOG SM 5520F / EPA 418.1M														RATOR	(
S	SEMI-VOLATILE HYDROCARBONS TYPE SEMI-VOLATILE TYPE SEMI-VOLATILE														RECEIVED BY LABORATORY:	1	_
ANALYSIS	CHLORINATED SOLVENTS			3											/ED BY	1	بيل
AN.	OXYGENATED FUEL ADDITIVES M3260M														RECEN	/	SIGNATURE
	BTEX & OXYGENATES + PB SCAVENCERP EPA 8260B	×											RES				"
	EPA 8260 Full List + Oxy / Fuel Additives												SIGNATURES				
	VOLATILE HYDROCARBONS EPA 8260 (FULL LIST)												SIGN				
	TPH DIESEL / MOTOR OIL EPA 8015M								///					TIME:	TIME	TIME:	TIME:
	X3T8/8A2/H9T 0208/M3F08 A93																
	PRESV.	Yes										-					
	CONT.	W												DATE::	DATE::	DATE::	DATE:
	MATRIX	LIQ															
	TIME	320												(
	DATE	088 20 Julios										10.1		Men			
ž)	CLIENT SAMPLE ID.	DW-330												RELINQUISHED BY:	RECEIVED BY:	RELINQUISHED BY:	RECEIVED BY:
	ПЕМ	-	2	8	4	2	9	7	80	6	10	#		RELIN	RECE	RELIN	RECE

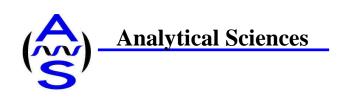
January 30, 2006

Stephen Knuttel SCS Engineers 3645 Westwind Blvd Santa Rosa, CA 95403

Dear Stephen,

Enclosed you will find Analytical Sciences' final report 6011801 for your J.E. McCaffrey project. An invoice for this work is enclosed.

Should you or your client have any questions regarding this report please contact me at your convenience. We appreciate you selecting Analytical Sciences for this work and look forward to serving your analytical chemistry needs on projects in the future.


Sincerely,

Analytical Sciences

Mark A. Valentini, Ph.D.

Laboratory Director

P.O. Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

Report Date: January 30, 2006

Laboratory Report

Stephen Knuttel SCS Engineers 3645 Westwind Blvd Santa Rosa, CA 95403

Project Name: J.E. McCaffrey 01203335.00

Lab Project: **6011801**

This 35 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D.

Manh A. Valentini

Laboratory Director

P.O. Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result ((ug/L)	RDL (ug/L)
6011801-01	MW-4	Gasoline		160	M	50
Date Sampled:	01/17/06	Date Analyzed:	01/20/06		QC Ba	atch: B000519
Date Received:	01/18/06	Method:	EPA 8015			

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011801-02	MW-5	Gasoline		140	50
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/20/06 EPA 8015		QC Batch: B000519

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011801-03	MW-9	Gasoline		ND	50
Date Sampled:	01/17/06	Date Analyzed:	01/20/06	QC	C Batch: B000519
Date Received:	01/18/06	Method:	EPA 8015		

TPH Gasoline in Water

Lab#	Sample ID Compound Name Res		Result (ug/L)	RDL (ug/L)		
6011801-04	MW-14	Gasoline		ND 50		_
Date Sampled:	01/17/06	Date Analyzed:	01/20/06	QC 1	Batch: B000519	
Date Received:	01/18/06	Method:	EPA 8015			

Lab Project#: 6011801

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result ((ug/L)	RDL (ug/L)
6011801-05	MW-15	Gasoline		270	M	50
Date Sampled:	01/17/06	Date Analyzed:	01/20/06		QC Ba	atch: B000519
Date Received:	01/18/06	Method:	EPA 8015			

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)	
6011801-06	MW-18D	Gasoline		ND	50	-
Date Sampled:	01/17/06	Date Analyzed:	01/20/06	QC	Batch: B000519	
Date Received:	01/18/06	Method:	EPA 8015			

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)	
6011801-07	MW-20	Gasoline		ND 50		_
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/20/06 EPA 8015	QC I	Batch: B000519	

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result ((ug/L)	RDL (ug/L)
6011801-08	MW-22	Gasoline		150	M	50
Date Sampled:	01/17/06	Date Analyzed:	01/20/06		QC Ba	atch: B000519
Date Received:	01/18/06	Method:	EPA 8015			

TPH Gasoline in Water

	*	ompound Name		Result (ug/L)	RDL (ug/L)
6011801-09	MW-24D Ga	Gasoline		ND	50
Date Sampled: 01/17/0 Date Received: 01/18/0		Date Analyzed: Method:	01/20/06 EPA 8015	QC Bat	tch: B000519

Volatile Hydrocarbons by GC/MS in Water

Lab#	Sample ID	Compou	nd Name		Result (ug/L)	RDL (ug/L)
6011801-01	MW-4	Benzene			ND	1.0
		Toluene	Toluene			1.0
		Ethylber	nzene		ND	1.0
		m,p-Xyl	ene		ND	1.0
		o-Xylene	e		ND	1.0
		Tertiary	Butyl Alcohol (T	BA)	ND	25
		Methyl t	ert-Butyl Ether (I	MTBE)	160	1.0
		Di-isopr	Di-isopropyl Ether (DIPE)			1.0
		Ethyl ter	Ethyl tert-Butyl Ether (ETBE) Tert-Amyl Methyl Ether (TAME)		ND	1.0
		Tert-Am			1.2	1.0
Surrog	gates	Result (ug/L)	% Recove	ery	Acceptance Range	(%)
Dibromofluorometh	nane	20.0	100		70-130	
Toluene-d8		20.6	103		70-130	
4-Bromofluorobenz	ene	19.3	96		70-130	
Date Sampled: 0	1/17/06		Date Analyzed:	01/19/06	QC I	Batch: B000509
Date Received: 0	1/18/06		Method:	EPA 8260B		

Lab#	Sample ID	Compou	and Name		Result (ug/L)	RDL (ug/L)
6011801-02	MW-5	Benzene)		15	1.0
		Toluene			ND	1.0
		Ethylber	nzene		ND	1.0
		m,p-Xyl	ene		ND	1.0
		o-Xylen	e		ND	1.0
		Tertiary	Butyl Alcohol (7	ГВА)	ND	25
		Methyl t	Methyl tert-Butyl Ether (MTBE)			1.0
		Di-isopr	Di-isopropyl Ether (DIPE)			1.0
		Ethyl ter	Ethyl tert-Butyl Ether (ETBE)		ND	1.0
		Tert-Am	Tert-Amyl Methyl Ether (TAME)		ND	1.0
Suri	Surrogates		ug/L) % Recovery		Acceptance Ra	inge (%)
Dibromofluorome	ethane	20.4	102		70-130)
Toluene-d8		20.7	104		70-130)
4-Bromofluorober	nzene	19.5	98		70-130)
Date Sampled:	01/17/06		Date Analyzed:	01/19/06		QC Batch: B000509
Date Received:	01/18/06		Method:	EPA 8260B		

Volatile Hydrocarbons by GC/MS in Water

Lab#	Sample ID	Compor	und Name		Result (ug/L)	RDL (ug/L)
6011801-03	MW-9	Benzene	e		ND	1.0
		Toluene	2		ND	1.0
		Ethylbe	nzene		ND	1.0
		m,p-Xy	lene		ND	1.0
		o-Xylen	ie		ND	1.0
		Tertiary	Butyl Alcohol (7	ГВА)	ND	25
		Methyl	tert-Butyl Ether (MTBE)	13	1.0
		Di-isopi	ropyl Ether (DIPE	Ε)	ND	1.0
		Ethyl te	Ethyl tert-Butyl Ether (ETBE)		ND	1.0
		Tert-An	nyl Methyl Ether	(TAME)	ND	1.0
Sur	rogates	Result (ug/L)	% Recove	ery _	Acceptance Range (%)
Dibromofluorom	ethane	20.0	100		70-130	
Toluene-d8		20.7	104		70-130	
4-Bromofluorobe	enzene	19.5	98		70-130	
Date Sampled:	01/17/06		Date Analyzed:	01/23/06	QC B	atch: B000509
Date Received:	01/18/06		Method:	EPA 8260B		

Lab Project#: 6011801 CA Lab Accreditation #: 2303

Lab#	Sample ID	Compou	Compound Name		Result (ug/L)	RDL (ug/L)
6011801-04	MW-14	Benzene	e		ND	1.0
		Toluene	;		ND	1.0
		Ethylber	nzene		ND	1.0
		m,p-Xyl	lene		ND	1.0
		o-Xylen	ie		ND	1.0
		Tertiary	Butyl Alcohol (7	ГВА)	ND	25
		Methyl	tert-Butyl Ether (MTBE)	ND	1.0
		Di-isopı	ropyl Ether (DIPE	Ε)	ND	1.0
		Ethyl te	Ethyl tert-Butyl Ether (ETBE)		ND	1.0
		Tert-An	Tert-Amyl Methyl Ether (TAME)		ND	1.0
Su	Surrogates		% Recovery		Acceptance Range	(%)
Dibromofluorom	nethane	20.3	102		70-130	
Toluene-d8		20.2	101		70-130	
4-Bromofluorob	enzene	19.6	98		70-130	
Date Sampled:	01/17/06		Date Analyzed:	01/19/06	QC I	Batch: B000509
Date Received:	01/18/06		Method:	EPA 8260B		

Volatile Hydrocarbons by GC/MS in Water

Lab#	Sample ID	Compo	und Name		Result (ug/L)	RDL (ug/L)
6011801-05	MW-15	Benzene	e		ND	5.0
		Toluene	e		ND	5.0
		Ethylbe	nzene		ND	5.0
		m,p-Xy	lene		ND	5.0
		o-Xylen	ne		ND	5.0
		Tertiary	Butyl Alcohol (7	TBA)	ND	120
		Methyl	Methyl tert-Butyl Ether (MTBE)		270	5.0
		Di-isopi	ropyl Ether (DIPE	Ε)	ND	5.0
		Ethyl te	Ethyl tert-Butyl Ether (ETBE)		ND	5.0
		Tert-An	nyl Methyl Ether	(TAME)	ND	5.0
Sur	rrogates	Result (ug/L)	% Recove	ery	Acceptance Range	(%)
Dibromofluorom	ethane	20.1	100		70-130	
Toluene-d8		20.5	102		70-130	
4-Bromofluorobe	enzene	19.8	99		70-130	
Date Sampled:	01/17/06		Date Analyzed:	01/19/06	QC	Batch: B000509
Date Received:	01/18/06		Method:	EPA 8260B		

Lab Project#: 6011801 CA Lab Accreditation #: 2303

Lab#	Sample ID	Compo	und Name		Result (ug/L)	RDL (ug/L)
6011801-06	MW-18D	Benzene	e		ND	1.0
		Toluene	2		ND	1.0
		Ethylbe	nzene		ND	1.0
		m,p-Xy	lene		ND	1.0
		o-Xylen	ie		ND	1.0
		Tertiary	Butyl Alcohol (7	TBA)	ND	25
		Methyl	tert-Butyl Ether (MTBE)	ND	1.0
		Di-isopi	ropyl Ether (DIPE	Ε)	ND	1.0
		Ethyl te	Ethyl tert-Butyl Ether (ETBE)		ND	1.0
		Tert-An	nyl Methyl Ether	(TAME)	ND	1.0
Su	rrogates	Result (ug/L)	% Recove	ery	Acceptance Range (<u>(%)</u>
Dibromofluoron	nethane	20.0	100		70-130	
Toluene-d8		20.4	102		70-130	
4-Bromofluorob	enzene	19.8	99		70-130	
Date Sampled: Date Received:	01/17/06 01/18/06		Date Analyzed: Method:	01/19/06 EPA 8260B	QC E	satch: B000509

Volatile Hydrocarbons by GC/MS in Water

6011801-07 MW-20 Benzene Toluene Ethylbenzene		ND	
		1111	1.0
Ethylbenzene		ND	1.0
		ND	1.0
m,p-Xylene		ND	1.0
o-Xylene		ND	1.0
Tertiary Butyl A	Alcohol (TBA)	ND	25
Methyl tert-But	yl Ether (MTBE)	33	1.0
Di-isopropyl Et	her (DIPE)	ND	1.0
Ethyl tert-Butyl	Ether (ETBE)	ND	1.0
Tert-Amyl Meth	nyl Ether (TAME)	ND	1.0
Surrogates Result (ug/L)	% Recovery	Acceptance Range (%)
Dibromofluoromethane 20.3	102	70-130	
Toluene-d8 20.8	104	70-130	
4-Bromofluorobenzene 20.3	102	70-130	
Date Sampled: 01/17/06 Date A	nalyzed: 01/19/06	QC Bat	tch: B000509
Date Received: 01/18/06 Method	d: EPA 8260B		

Lab#	Sample ID	Compou	and Name		Result (ug/L)	RDL (ug/L)
6011801-08	MW-22	Benzene	е		ND	1.0
		Toluene	;		ND	1.0
		Ethylber	nzene		ND	1.0
		m,p-Xyl	lene		ND	1.0
		o-Xylen	e		ND	1.0
		Tertiary	Butyl Alcohol (7	ГВА)	ND	25
		Methyl 1	tert-Butyl Ether (MTBE)	150	1.0
		Di-isopr	copyl Ether (DIPE	Ε)	ND	1.0
		Ethyl ter	rt-Butyl Ether (E'	ГВЕ)	ND	1.0
		Tert-An	nyl Methyl Ether	(TAME)	ND	1.0
Su	rrogates	Result (ug/L)	% Recove	ery _	Acceptance Range ((%)
Dibromofluorom	ethane	20.3	102		70-130	
Toluene-d8		21.1	106		70-130	
4-Bromofluorobo	enzene	19.5	98		70-130	
Date Sampled:	01/17/06		Date Analyzed:	01/19/06	QC E	Batch: B000509
Date Received:	01/18/06		Method:	EPA 8260B		

Volatile Hydrocarbons by GC/MS in Water

Lab#	Sample ID	Compo	und Name		Result (ug/L)	RDL (ug/L)
6011801-09	MW-24D	Benzen	e		ND	1.0
		Toluene	e		ND	1.0
		Ethylbe	enzene		ND	1.0
		m,p-Xy	lene		3.2	1.0
		o-Xyler	ne		1.1	1.0
		Tertiary	Butyl Alcohol (7	ГВА)	ND	25
		Methyl	tert-Butyl Ether (MTBE)	ND	1.0
		Di-isop	Di-isopropyl Ether (DIPE)		ND	1.0
		Ethyl te	Ethyl tert-Butyl Ether (ETBE)		ND	1.0
			Tert-Amyl Methyl Ether (TAME)		ND	1.0
Sui	rrogates	Result (ug/L)	% Recove	ery	Acceptance Rang	ge (%)
Dibromofluorom	ethane	20.2	101		70-130	
Toluene-d8		20.5	102		70-130	
4-Bromofluorobe	enzene	19.8	99		70-130	
Date Sampled:	01/17/06		Date Analyzed:	01/19/06	Q	C Batch: B000509
Date Received:	01/18/06		Method:	EPA 8260B		

Lab Project#: 6011801 CA Lab Accreditation #: 2303

Methane by GC

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011801-01	MW-4	Methane		ND	10
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/25/06 RSK 175	(QC Batch: B000544

Methane by GC

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011801-02	MW-5	Methane		2700	50
Date Sampled:	01/17/06	Date Analyzed:	01/25/06	QC	Batch: B000544
Date Received:	01/18/06	Method:	RSK 175		

Methane by GC

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011801-03	MW-9	Methane		ND	10
Date Sampled:	01/17/06	Date Analyzed:	01/25/06		QC Batch: B000544
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/25/06 RSK 175		QC Batch: B000544

Methane by GC

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011801-04	MW-14	Methane		ND	10
Date Sampled:	01/17/06	Date Analyzed:	01/25/06	QC Batch: B000544	
Date Received:	01/18/06	Method:	RSK 175		

Methane by GC

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011801-05	MW-15	Methane		ND	10
Date Sampled:	01/17/06	Date Analyzed:	01/25/06	QC Batch: B000544	
Date Received:	01/18/06	Method:	RSK 175		

Methane by GC

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011801-06	MW-18D	Methane		ND	10
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/25/06 RSK 175	QC	Batch: B000544
Date Received:	01/18/06	Method:	KSK 1/5		

Methane by GC

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011801-07	MW-20	Methane		ND	10
Date Sampled:	01/17/06	Date Analyzed:	01/25/06		QC Batch: B000544
Date Received:	01/18/06	Method:	RSK 175		

Methane by GC

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)	
6011801-08	MW-22	Methane		ND	10	_
Date Sampled:	01/17/06	Date Analyzed:	01/25/06	QC	Batch: B000544	
Date Received:	01/18/06	Method:	RSK 175			

Methane by GC

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)	
6011801-09	MW-24D	Methane		ND	10	
Date Sampled:	01/17/06	Date Analyzed:	01/25/06	QC Batch: B000544		
Date Received:	01/18/06	Method:	RSK 175			

Dissolved Metals in Water

Lab#	Sample ID MW-4	Compound Name Manganese (Mn)		Result (mg/L) 2.9	RDL (mg/L) 0.10
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/26/06 EPA 6010B	QC	Batch: B000543

Dissolved Metals in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-02	MW-5	Manganese (Mn)		3.2	0.10
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/26/06 EPA 6010B	Q	C Batch: B000543

Dissolved Metals in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-03	MW-9	Manganese (Mn)		0.089	0.020
Date Sampled:	01/17/06	Date Analyzed:	01/26/06	Q	C Batch: B000543
Date Received:	01/18/06	Method:	EPA 6010B		

Dissolved Metals in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-04	MW-14	Manganese (Mn)		ND	0.020
Date Sampled:	01/17/06	Date Analyzed:	01/26/06	Qu	C Batch: B000543
Date Received:	01/18/06	Method:	EPA 6010B		

Dissolved Metals in Water

Lab# 6011801-05	Sample ID MW-15	Compound Name Manganese (Mn)		Result (mg/L) 1.5	RDL (mg/L) 0.10
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/26/06 EPA 6010B	QCI	Batch: B000543

Dissolved Metals in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-06	MW-18D	Manganese (Mn)		1.3	0.10
Date Sampled:	01/17/06	Date Analyzed:	01/26/06	QC Batch: B000543	
Date Received:	01/18/06	Method:	EPA 6010B		

Dissolved Metals in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-07	MW-20	Manganese (Mn)		0.75	0.020
Date Sampled:	01/17/06	Date Analyzed:	01/26/06	QO	C Batch: B000543
Date Received:	01/18/06	Method:	EPA 6010B		

Dissolved Metals in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-08	MW-22	Manganese (Mn)		ND	0.020
Data Campled	01/17/06	Data Analyzadı	01/26/06	00	Patch: D000542
Date Received:	01/17/06	Date Analyzed:	01/26/06 EPA 6010B	ŲĊ	Batch: B000543
Date Received:	01/18/06	Method:	EPA 6010B		

Dissolved Metals in Water

Lab#	Sample ID MW-24D	Compound Name Manganese (Mn)		Result (mg/L) 0.041	RDL (mg/L) 0.020
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/26/06 EPA 6010B	QC I	Batch: B000543

Metals in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-01	MW-4	Magnesium (Mg)		42	1.0
Date Sampled:	01/17/06	Date Analyzed:	01/26/06	Q	C Batch: B000543
Date Received:	01/18/06	Method:	EPA 6010B		

Metals in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-02	MW-5	Magnesium (Mg)		24	1.0
Date Sampled:	01/17/06	Date Analyzed:	01/26/06	QC	Batch: B000543
Date Received:	01/18/06	Method:	EPA 6010B		

Metals in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-03	MW-9	Magnesium (Mg)		57	1.0
Date Sampled:	01/17/06	Date Analyzed:	01/26/06	QC Batch: B000543	
Date Received:	01/18/06	Method:	EPA 6010B		

Metals in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-04	MW-14	Magnesium (Mg)		33	1.0
Date Sampled:	01/17/06	Date Analyzed:	01/26/06	QC Batch: B000543	
Date Received:	01/18/06	Method:	EPA 6010B		

Metals in Water

Lab# 6011801-05	Sample ID MW-15	Compound Name Magnesium (Mg)		Result (mg/L)	RDL (mg/L)
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/26/06 EPA 6010B	QCI	Batch: B000543

Metals in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-06	MW-18D	Magnesium (Mg)		9.8	0.10
Date Sampled:	01/17/06	Date Analyzed:	01/26/06	QC Batch: B000543	
Date Received:	01/18/06	Method:	EPA 6010B		

Metals in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)	
6011801-07	MW-20	Magnesium (Mg)		19	1.0	
Date Sampled:	01/17/06	Date Analyzed:	01/26/06	QC Batch: B000543		
Date Received:	01/18/06	Method:	EPA 6010B			

Metals in Water

Lab#	Sample ID MW-22	Compound Name Magnesium (Mg)		Result (mg/L)	RDL (mg/L)
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/26/06 EPA 6010B	QC E	Batch: B000543

Metals in Water

Lab#	Sample ID MW-24D	Compound Name Magnesium (Mg)		Result (mg/L)	RDL (mg/L)
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/26/06 EPA 6010B	QCI	Batch: B000543

Dissolved CO2 in Water

Lab#	Sample ID	Compound Name		Result (mg CaC03/L)	RDL (mg CaC03/L)
6011801-01	MW-4	Total Alkalinity pH Free C02 by calculation		280 6.8 92	5.0 1.0 5.0
Date Sampled:	01/17/06	Date Analyzed:	01/24/06		Batch: B000538
Date Received:	01/18/06	Method:	SM 4500		

Lab Project#: 6011801 CA Lab Accreditation #: 2303

Lab Project#: 6011801

Dissolved CO2 in Water

Lab#	Sample ID	Compound Name		Result (mg CaC03/L)	RDL (mg CaC03/L)
6011801-02	MW-5	Total Alkalinity		180	5.0
		pН		6.8	1.0
		Free C02 by calculation		62	5.0
Date Sampled:	01/17/06	Date Analyzed:	01/24/06	QC Batch: B000538	
Date Received:	01/18/06	Method:	SM 4500		

Dissolved CO2 in Water

Lab#	Sample ID	Compound Name		Result (mg CaC03/L)	RDL (mg CaC03/L)
6011801-03	MW-9	Total Alkalinity pH Free C02 by calculation		460 7.0 81	5.0 1.0 5.0
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/24/06 SM 4500	QC	Batch: B000538

Dissolved CO2 in Water

Lab#	Sample ID	Compound Name		Result (mg CaC03/L	RDL (mg CaC03/L)	
6011801-04	MW-14	Total Alkalinity		310	5.0	
		рН		7.4	1.0	
		Free C02 by calculation		24	5.0	
Date Sampled:	01/17/06	Date Analyzed:	01/24/06	(QC Batch: B000538	
Date Received:	01/18/06	Method:	SM 4500			

Dissolved CO2 in Water

Lab#	Sample ID	Compound Name		Result (mg CaC03/L)	RDL (mg CaC03/L)
6011801-05	MW-15	Total Alkalinity		720	5.0
		рН		6.8	1.0
		Free C02 by calculation		210	5.0
Date Sampled:	01/17/06	Date Analyzed:	01/24/06	QC Batch: B000538	
Date Received:	01/18/06	Method:	SM 4500		

Dissolved CO2 in Water

Lab#	Sample ID	Compound Name		Result (mg CaC03/L)	RDL (mg CaC03/L)
6011801-06	MW-18D	Total Alkalinity		93	5.0
		pН		7.3	1.0
		Free C02 by calculation		9.4	5.0
Date Sampled:	01/17/06	Date Analyzed:	01/24/06	QC Batch: B000538	
Date Received:	01/18/06	Method:	SM 4500		

Dissolved CO2 in Water

Lab#	Sample ID	Compound Name		Result (mg CaC03/L)	RDL (mg CaC03/L)
6011801-07	MW-20	Total Alkalinity pH		190 6.6	5.0
		Free C02 by calculation		96	5.0
Date Sampled:	01/17/06	Date Analyzed:	01/24/06	QC Batch: B000538	
Date Received:	01/18/06	Method:	SM 4500		

Dissolved CO2 in Water

Lab#	Sample ID	Compound Name		Result (mg CaC03/L)	RDL (mg CaC03/L)
6011801-08 MW-22	Total Alkalinity		450	5.0	
		рН		7.1	1.0
		Free C02 by calculation	02 by calculation 70	70	5.0
Date Sampled:	01/17/06	Date Analyzed:	01/24/06	QC Batch: B000538	
Date Received:	01/18/06	Method:	SM 4500		

Dissolved CO2 in Water

Lab#	Sample ID	Compound Name		Result (mg CaC03/L)	RDL (mg CaC03/L)	
6011801-09	MW-24D	Total Alkalinity		150	5.0	
		pН		7.8	1.0	
		Free C02 by calculation		5.3	5.0	
Date Sampled:	01/17/06	Date Analyzed:	01/24/06	QC Batch: B000538		
Date Received:	01/18/06	Method:	SM 4500			

Oxygen Reduction Potential (ORP) in Water

Lab# 6011801-01	Sample ID MW-4	Compound Name Oxidation Reduction Potential (ORP)	Result (mV)	RDL (mV)
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: 01/18/06 Method: SM 2580	QC	Batch: B000498

Oxygen Reduction Potential (ORP) in Water

Lab#	Sample ID	Compound Name		Result (mV)	RDL (mV)
6011801-02	MW-5	Oxidation Reduction Potential (ORP)		300	0.0
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/18/06 SM 2580		QC Batch: B000498

Lab Project#: 6011801

Oxygen Reduction Potential (ORP) in Water

Lab#	Sample ID	Compound Name		Result (mV)	RDL (mV)
6011801-03	MW-9	Oxidation Reduction Potential (ORP)		310	0.0
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/18/06 SM 2580		QC Batch: B000498

Oxygen Reduction Potential (ORP) in Water

Lab#	Sample ID	Compound Name		Result (mV)	RDL (mV)
6011801-04	MW-14	Oxidation Reduction Potential (ORP)		290	0.0
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/18/06 SM 2580		QC Batch: B000498

Oxygen Reduction Potential (ORP) in Water

Lab# 6011801-05	Sample ID MW-15	Compound Name Oxidation Reduction Potential (ORP)	Result (mV)	RDL (mV) 0.0
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: 01/18/06 Method: SM 2580	Qo	C Batch: B000498

Oxygen Reduction Potential (ORP) in Water

Lab#	Sample ID	Compound Name		Result (mV)	RDL (mV)
6011801-06	MW-18D	Oxidation Reduction Pote	ential (ORP)	290	0.0
Date Sampled:	01/17/06	Date Analyzed:	01/18/06		QC Batch: B000498
Date Received:	01/18/06	Method:	SM 2580		

Oxygen Reduction Potential (ORP) in Water

Lab#	Sample ID	Compound Name		Result (mV)	RDL (mV)
6011801-07	MW-20	Oxidation Reduction Potential (ORP)		320	0.0
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/18/06 SM 2580		QC Batch: B000498

Oxygen Reduction Potential (ORP) in Water

Lab#	Sample ID MW-22	Compound Name Oxidation Reduction Potential (ORP)	Result (mV)	RDL (mV) 0.0
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: 01/18/06 Method: SM 2580	QC	C Batch: B000498

Oxygen Reduction Potential (ORP) in Water

Lab#	Sample ID MW-24D	Compound Name Oxidation Reduction Potential (OI	$\frac{\text{Result (mV)}}{300}$	RDL (mV) 0.0
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: 01/18/ Method: SM 25		QC Batch: B000498

Nitrate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-01	MW-4	Nitrate		ND	0.10
Date Sampled:	01/17/06	Date Analyzed:	01/18/06	QC	Batch: B000501
Date Received:	01/18/06	Method:	EPA 300		

Lab Project#: 6011801

Nitrate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-02	MW-5	Nitrate		ND	0.10
Date Sampled:	01/17/06	Date Analyzed:	01/18/06	Qe	C Batch: B000501
Date Received:	01/18/06	Method:	EPA 300		

Nitrate in Water

Lab# 6011801-03	Sample ID MW-9	Compound Name Nitrate		Result (mg/L)	RDL (mg/L)
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/19/06 EPA 300	QC	Batch: B000501

Nitrate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-04	MW-14	Nitrate		1.1	0.10
Date Sampled:	01/17/06	Date Analyzed:	01/18/06		QC Batch: B000501
Date Received:	01/18/06	Method:	EPA 300		

Nitrate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-05	MW-15	Nitrate		ND	0.10
Date Sampled:	01/17/06	Date Analyzed:	01/18/06		QC Batch: B000501
Date Received:	01/18/06	Method:	EPA 300		

Nitrate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-06	MW-18D	Nitrate		ND	0.10
Date Sampled:	01/17/06	Date Analyzed:	01/18/06	Q	C Batch: B000501
Date Received:	01/18/06	Method:	EPA 300		

Nitrate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-07	MW-20	Nitrate		1.4	0.10
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/18/06 EPA 300	(QC Batch: B000501

Nitrate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-08	MW-22	Nitrate		18	0.50
Date Sampled:	01/17/06	Date Analyzed:	01/19/06	Q	C Batch: B000501
Date Received:	01/18/06	Method:	EPA 300		

Nitrate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-09	MW-24D	Nitrate		1.3	0.10
Date Sampled:	01/17/06	Date Analyzed:	01/18/06		QC Batch: B000501
Date Received:	01/18/06	Method:	EPA 300		

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-01	MW-4	Sulfate as SO4		19	1.0
Date Sampled:	01/17/06	Date Analyzed:	01/18/06	Q	C Batch: B000501
Date Received:	01/18/06	Method:	EPA 300.0		

Sulfate in Water

Lab# 6011801-02	Sample ID MW-5	Compound Name Sulfate as SO4		Result (mg/L) 6.3	RDL (mg/L) 0.50
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/20/06 EPA 300.0	QC	Batch: B000501

Sulfate in Water

Lab#	Sample ID MW-9	Compound Name Sulfate as SO4		Result (mg/L) 46	RDL (mg/L) 1.0
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/19/06 EPA 300.0	QC I	Batch: B000501

Sulfate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-04	MW-14	Sulfate as SO4		27	1.0
Date Sampled:	01/17/06	Date Analyzed:	01/19/06		QC Batch: B000501
Date Received:	01/18/06	Method:	EPA 300.0		

Lab Project#: 6011801

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-05	MW-15	Sulfate as SO4		71	2.0
Date Sampled:	01/17/06	Date Analyzed:	01/20/06	(QC Batch: B000501
Date Received:	01/18/06	Method:	EPA 300.0		

Sulfate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-06	MW-18D	Sulfate as SO4	_	6.1	0.10
Date Sampled:	01/17/06	Date Analyzed:	01/18/06	QC	Batch: B000501
Date Received:	01/18/06	Method:	EPA 300.0		

Sulfate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-07	MW-20	Sulfate as SO4	_	8.3	1.0
Date Sampled:	01/17/06	Date Analyzed:	01/19/06	QC	Batch: B000501
Date Received:	01/18/06	Method:	EPA 300.0		

Sulfate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-08	MW-22	Sulfate as SO4		61	5.0
Date Sampled:	01/17/06 01/18/06	Date Analyzed:	01/19/06 EPA 300.0	QC	Batch: B000501

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-09	MW-24D	Sulfate as SO4		7.9	1.0
Date Sampled:	01/17/06	Date Analyzed:	01/19/06	QO	C Batch: B000501
Date Received:	01/18/06	Method:	EPA 300.0		

Ferrous Iron in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-01	MW-4	Ferrous Iron		0.24	0.20
Date Sampled:	01/17/06	Date Analyzed:	01/18/06	QC	Batch: B000497
Date Received:	01/18/06	Method:	SM 3500		

Ferrous Iron in Water

Lab# 6011801-02	Sample ID MW-5	Compound Name Ferrous Iron		Result (mg/L) 0.22	RDL (mg/L) 0.20
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/18/06 SM 3500	QC	Batch: B000497

Ferrous Iron in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-03	MW-9	Ferrous Iron		ND	0.20
Date Sampled:	01/17/06	Date Analyzed:	01/18/06	QC B	atch: B000497
Date Received:	01/18/06	Method:	SM 3500		

Lab Project#: 6011801

Ferrous Iron in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-04	MW-14	Ferrous Iron		ND	0.20
Date Sampled:	01/17/06	Date Analyzed:	01/18/06	C	OC Batch: B000497
Date Received:	01/18/06	Method:	SM 3500		

Ferrous Iron in Water

Lab#	Sample ID MW-15	Compound Name Ferrous Iron		Result (mg/L) 0.75	RDL (mg/L) 0.20
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/18/06 SM 3500	QC	Batch: B000497

Ferrous Iron in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)	
6011801-06	MW-18D	Ferrous Iron		0.38	0.20	_
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/18/06 SM 3500	QC	Batch: B000497	

Ferrous Iron in Water

Lab# 6011801-07	Sample ID MW-20	Compound Name Ferrous Iron		Result (mg/L)	RDL (mg/L) 0.20
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/18/06 SM 3500	Qo	Batch: B000497

Lab Project#: 6011801

Ferrous Iron in Water

Lab#	Sample ID MW-22	Compound Name Ferrous Iron		Result (mg/L) ND	RDL (mg/L) 0.20
Date Sampled: Date Received:	01/17/06 01/18/06	Date Analyzed: Method:	01/18/06 SM 3500	QC	Batch: B000497

Ferrous Iron in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011801-09	MW-24D	Ferrous Iron		ND	0.20
Date Sampled:	01/17/06	Date Analyzed:	01/18/06		QC Batch: B000497
Date Received:	01/18/06	Method:	SM 3500		

Page 27 of 35

Lab Project#: 6011801

CA Lab Accreditation #: 2303

Quality Assurance Report

TPH Gasoline in Water

		Reporting		Spike	Source		%REC		RPD	
Analyte	Resul	t Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B000519 - EPA 5030 GC										
Blank (B000519-BLK1)				Prepared	& Analyz	ed: 01/20	0/06			
Gasoline	ND	50	ug/L	•						
Matrix Spike (B000519-MS1)		Source: 6011801	l -01	Prepared	& Analyz	ed: 01/20	0/06			
Benzene	10.7	0.50	ug/L	10.0	ND	107	70-130			
Toluene	10.6	0.50	ug/L	10.0	ND	106	70-130			
Ethylbenzene	10.8	0.50	ug/L	10.0	ND	108	70-130			
Xylenes	32.6	1.5	ug/L	30.0	ND	109	70-130			
Matrix Spike Dup (B000519-MSD1)		Source: 6011801	-01	Prepared	& Analyz	ed: 01/20	0/06			
Benzene	10.5	0.50	ug/L	10.0	ND	105	70-130	2	20	
Toluene	10.5	0.50	ug/L	10.0	ND	105	70-130	0.9	20	
Ethylbenzene	10.7	0.50	ug/L	10.0	ND	107	70-130	0.9	20	
Xylenes	32.4	1.5	ug/L	30.0	ND	108	70-130	0.9	20	

Page 28 of 35

Lab Project#: 6011801

CA Lab Accreditation #: 2303

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000509 - EPA 5030 GC/MS										
Blank (B000509-BLK1)				Prepared	& Analyz	zed: 01/19	0/06			
Benzene	ND	1.0	ug/L							
Γoluene	ND	1.0	ug/L							
Ethylbenzene	ND	1.0	ug/L							
m,p-Xylene	ND	1.0	ug/L							
o-Xylene	ND	1.0	ug/L							
Tertiary Butyl Alcohol (TBA)	ND	25	ug/L							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	ug/L							
Di-isopropyl Ether (DIPE)	ND	1.0	ug/L							
Ethyl tert-Butyl Ether (ETBE)	ND	1.0	ug/L							
Tert-Amyl Methyl Ether (TAME)	ND	1.0	ug/L							
Surrogate: Dibromofluoromethane	19.5		ug/L	20.0		98	70-130			
Surrogate: Toluene-d8	20.7		ug/L	20.0		104	70-130			
Surrogate: 4-Bromofluorobenzene	19.9		ug/L	20.0		100	70-130			
Matrix Spike (B000509-MS1)	Se	ource: 6011801	1-04	Prepared	& Analyz	zed: 01/19)/06			
1,1-Dichloroethene (1,1-DCE)	25.1	1.0	ug/L	25.0	ND	100	70-130			
Benzene	23.6	1.0	ug/L	25.0	ND	94	70-130			
Γrichloroethene (TCE)	24.3	1.0	ug/L	25.0	ND	97	70-130			
Γoluene	24.6	1.0	ug/L	25.0	ND	98	70-130			
Chlorobenzene	22.8	1.0	ug/L	25.0	ND	91	70-130			
Surrogate: Dibromofluoromethane	20.1		ug/L	20.0		100	70-130			
Surrogate: Toluene-d8	20.3		ug/L	20.0		102	70-130			
Surrogate: 4-Bromofluorobenzene	19.8		ug/L	20.0		99	70-130			
Matrix Spike Dup (B000509-MSD1)	Se	ource: 6011801	1-04	Prepared	& Analyz	zed: 01/19	0/06			
1,1-Dichloroethene (1,1-DCE)	22.2	1.0	ug/L	25.0	ND	89	70-130	12	20	
Benzene	22.2	1.0	ug/L	25.0	ND	89	70-130	5	20	
Trichloroethene (TCE)	22.5	1.0	ug/L	25.0	ND	90	70-130	7	20	
Гoluene	22.6	1.0	ug/L	25.0	ND	90	70-130	9	20	
Chlorobenzene	21.5	1.0	ug/L	25.0	ND	86	70-130	6	20	
Surrogate: Dibromofluoromethane	21.0		ug/L	20.0		105	70-130			
Surrogate: Toluene-d8	21.0		ug/L	20.0		105	70-130			
Surrogate: 4-Bromofluorobenzene	19.9		ug/L	20.0		100	70-130			

Lab Project#: 6011801 CA Lab Accreditation #: 2303

Methane by GC

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000544 - RSK 175										
Blank (B000544-BLK1)				Prepared	& Analyz	zed: 01/25	5/06			
Methane	ND	10	ug/L							
Blank (B000544-BLK2)				Prepared	& Analyz	zed: 01/25	5/06			
Methane	ND	10	ug/L	•	•					

Page 30 of 35

Lab Project#: 6011801

CA Lab Accreditation #: 2303

Dissolved Metals in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000543 - EPA 3010A										
Blank (B000543-BLK1)				Prepared	: 01/25/06	Analyze	ed: 01/26/0)6		
Manganese (Mn)	ND	0.020	mg/L							
LCS (B000543-BS1)				Prepared	: 01/25/06	Analyze	ed: 01/26/0)6		
Manganese (Mn)	0.506	0.020	mg/L	0.500		101	70-130			
LCS Dup (B000543-BSD1)				Prepared	: 01/25/06	Analyze	ed: 01/26/0)6		
Manganese (Mn)	0.521	0.020	mg/L	0.500		104	70-130	3	20	

Lab Project#: 6011801 CA Lab Accreditation #: 2303

Metals in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000543 - EPA 3010A										
Blank (B000543-BLK1)				Prepared	: 01/25/06	5 Analyze	ed: 01/26/0	06		
Magnesium (Mg)	ND	0.10	mg/L							
LCS (B000543-BS1)				Prepared	: 01/25/06	5 Analyze	ed: 01/26/0	06		
Magnesium (Mg)	0.487	0.10	mg/L	0.500		97	70-130			
LCS Dup (B000543-BSD1)				Prepared	: 01/25/06	5 Analyze	ed: 01/26/0	06		
Magnesium (Mg)	0.494	0.10	mg/L	0.500		99	70-130	2	20	

Lab Project#: 6011801 CA Lab Accreditation #: 2303

Nitrate in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000501 - NO PREP										
Blank (B000501-BLK1)				Prepared	: 01/17/06	Analyze	ed: 01/18/0)6		
Nitrate	ND	0.10	mg/L							
LCS (B000501-BS1)				Prepared	: 01/17/06	Analyze	ed: 01/18/0)6		
Nitrate	2.03	0.10	mg/L	2.00		102	80-120			
LCS Dup (B000501-BSD1)				Prepared	: 01/17/06	Analyze	ed: 01/18/0)6		
Nitrate	1.93	0.10	mg/L	2.00		96	80-120	5	20	

Page 33 of 35

Lab Project#: 6011801

CA Lab Accreditation #: 2303

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000501 - NO PREP										
Blank (B000501-BLK1)				Prepared	: 01/17/06	Analyz	ed: 01/18/0)6		
Sulfate as SO4	ND	0.10	mg/L							
LCS (B000501-BS1)				Prepared	: 01/17/06	Analyze	ed: 01/18/0)6		
Sulfate as SO4	2.10	0.10	mg/L	2.00		105	80-120			
LCS Dup (B000501-BSD1)				Prepared	: 01/17/06	Analyz	ed: 01/18/0)6		
Sulfate as SO4	2.00	0.10	mg/L	2.00		100	80-120	5	20	

Lab Project#: 6011801 CA Lab Accreditation #: 2303

Notes and Definitions

M The TPH Gasoline result consists primarily of Methyl Tertiary Butyl Ether (MTBE).

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

Lab Project#: 6011801 CA Lab Accreditation #: 2303

Analytical Sciences
P.O. Box 750336, Petaluma, CA 94975-0336
110 Liberty Street, Petaluma, CA 94952
(707) 769-3128

CHAIN OF CUSTODY

	CHENTANEORNATION	EODMAT	201			1110		11221	WEINIS WEGINIAM		: 74 3	SC	SCS ENGINEERS PROJECT NAME:	EERS P	ROJECT	NAME		٦	10011		
							5			3							1	I	McCorress		
ŭ	COMPANY NAME: SCS	SCS ENGINEERS				CONTACT:	÷	Σ	٥	JIM McCARGOD	`	SCS	SCS ENGINEERS PROJECT NUMBER:	RS PRO	JECT N	JMBER:	210	233	03335,00		
,	ADDRESS: 3645 WESTWIND BOULEVARD	WESTWIND	BOULE	/ARD	COMPAN	PANY NAME:	1 1	7	IF McCongrey	4	ع ا	1	TURNAROUND TIME (check one)	NUOS	MIL C	che	rk on) (e	GEOTRACKER EDF:	\ :	Z
	SANT	SANTA ROSA, CA 95403	9540	_		ADDRESS:		7,7%		4	1	Mobil	MOBILE LAB						GLOBAL ID:		
_	CONTACT:						N		8	13	08.407	SA	SAME DAY		1	24 Hours	s	<u>-1</u>	COOLER TEMPERATURE	TURE	
	PHONE#: (707) 546-9461	546-9461	8			PHONE#:		707	769	4		8	48 Hours		ľ	72 Hours	2		•	ç	
	Fax#: (707)	(707) 544-5769				FAX #:	L I					2	5 DAYS		. 1	NORMAL	اد د		200	,	
												ANALYSIS	SIS						PAGEOF	1	
ITEM	CLIENT SAMPLE ID.	DATE SAMPLED	JAKE	MATRIX	CONT.	PRESV.	TPH/GAS/ BTBL 6 MTDC 6 MTDC 6 MTDC 7	TPH DIESEL / MOTOR OIL EPA 8015M	VOLATILE HYDROCARBONS EPA \$260 (FULL LIST)	EPA 8260 Full List + Oxy / Fuel Additives BTEX & OXYGENATES	-PD SOMMENOENG CXYGENATED FUEL ADDITIVES	EPA 8260M CHLORINATED SOLVENTS	SEMI-VOLATILE HYDROCARBONS EPA 8270	TRPH / TOG M1.814 A93 / 30282 M	PESTICIDES / PCB'S PP 8081 / 8141 / 8082	CAM 17 METALS 5 LUFT METALS	TOTAL LEAD WATURAL	MOSTALWATTA	M M P MEN	SAMPLE SAMPLE	щ Ед
7	MM-4	5111 90-11-1	\$111 \$	L10	7	7/12	X				×						-		108110	101	
2	MM-5-		(010)	_	_	_	_									-				02	1
3	MW-9		12.00																	03	
_	MW-14		135																	40	,
10	MM-15		1315								2002									20	
•	MM-18D		215			_														06	
7	MW-20		1100	_																07	ì
∞	MM-22		1220																	30	
6	MW-24 D	4	1405	V	X	1	7	TOU												8	
9																					Π
7												-					-	-		<u> </u>	T
									SIGNA	SIGNATURES								-		-	
RE	RELINQUISHED BY: R	7	3	3	DATE::	<u> </u>	18-20	TME	933												S)
8	RECEIVED BY:			!	DATE::			TIME	1		REC	REÇEIVED BY	Ţ	BQRATORY:							
8	RELINQUISHED BY:				DATE::			TIME:			~	_	ر لهس		,	(1-18-06	6	
A.	RECEIVED BY:				DATE:			TIME:			NO.	u di di		1	1	1		10	200	1	<u></u>

January 30, 2006

Stephen Knuttel SCS Engineers 3645 Westwind Blvd Santa Rosa, CA 95403

Dear Stephen,

Enclosed you will find Analytical Sciences' final report 6011706 for your J.E. McCaffrey project. An invoice for this work is enclosed.

Should you or your client have any questions regarding this report please contact me at your convenience. We appreciate you selecting Analytical Sciences for this work and look forward to serving your analytical chemistry needs on projects in the future.

Sincerely,

Analytical Sciences

Mark A. Valentini, Ph.D.

Laboratory Director

P.O. Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

Report Date: January 30, 2006

Laboratory Report

Stephen Knuttel SCS Engineers 3645 Westwind Blvd Santa Rosa, CA 95403

Project Name: J.E. McCaffrey 01203335.00

Lab Project: **6011706**

This 36 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D.

Laboratory Director

Lab Project#: 6011706

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011706-01	MW-17D	Gasoline		ND	50
Date Sampled:	01/13/06	Date Analyzed:	01/20/06	QC	Batch: B000512
Date Received:	01/17/06	Method:	EPA 8015		

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011706-02	MW-19	Gasoline		ND	50
Date Sampled:	01/13/06	Date Analyzed:	01/20/06	QC	Batch: B000512
Date Received:	01/17/06	Method:	EPA 8015		

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011706-03	MW-21	Gasoline		ND	50
Date Sampled:	01/13/06	Date Analyzed:	01/20/06	(QC Batch: B000512
Date Received:	01/17/06	Method:	EPA 8015		

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)	
6011706-04	MW-23	Gasoline		ND	50	_
Date Sampled:	01/13/06	Date Analyzed:	01/20/06	QC	Batch: B000512	
Date Received:	01/17/06	Method:	EPA 8015			

Lab Project#: 6011706

TPH Gasoline in Water

	•		Result (ug/L)	RDL (ug/L)
W-26D Ga	soline		ND	50
	Date Analyzed:	01/20/06 EDA 2015	QC	Batch: B000512
	W-26D Ga		Date Analyzed: 01/20/06	Date Analyzed: 01/20/06 QC

TPH Gasoline in Water

Lab#	Sample ID MW-30	Compound Name Gasoline		Result (ug/L)	RDL (ug/L) 50
Date Sampled: Date Received:	01/13/06 01/17/06	Date Analyzed: Method:	01/20/06 EPA 8015	QC	Batch: B000512

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)	
6011706-07	MW-31D	Gasoline		ND	50	-
Date Sampled:	01/13/06	Date Analyzed: Method:	01/20/06 EPA 8015	QC	Batch: B000512	
Date Received:	01/17/06	Method:	EPA 8013			

Lab#	Sample ID	Compound Name		Result ((ug/L)	RDL (ug/L)	
6011706-08	MW-32	Gasoline		51	M	50	_
Date Sampled:	01/13/06	Date Analyzed:	01/20/06		QC Ba	ntch: B000512	
Date Received:	01/17/06	Method:	EPA 8015				

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011706-09	MW-16D	Gasoline		ND	50
Date Sampled:	01/16/06	Date Analyzed:	01/20/06		QC Batch: B000512
Date Received:	01/17/06	Method:	EPA 8015		

TPH Gasoline in Water

Lab# 6011706-10	Sample ID MW-25D	Compound Name Gasoline		Result (ug/L) ND	RDL (ug/L) 50	_
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/20/06 EPA 8015	QC	Batch: B000512	

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)	
6011706-11	MW-29D	Gasoline		ND	50	_
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/20/06 EPA 8015	QC .	Batch: B000512	

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)	
6011706-12	MW-34	Gasoline		ND	50	
Date Sampled:	01/16/06	Date Analyzed:	01/20/06	QC	Batch: B000512	
Date Received:	01/17/06	Method:	EPA 8015			

Lab Project#: 6011706

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011706-13	MW-35D	Gasoline		ND	50
Date Sampled:	01/16/06	Date Analyzed:	01/20/06	Q	C Batch: B000512
Date Received:	01/17/06	Method:	EPA 8015		

TPH Gasoline in Water

Lab#	Sample ID MW-7	Compound Name Gasoline		Result (ug/L)	RDL (ug/L)
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/20/06 EPA 8015		50 C Batch: B000512

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011706-15	MW-8	Gasoline		ND	50
Date Sampled:	01/16/06	Date Analyzed:	01/20/06	Ç	C Batch: B000512
Date Received:	01/17/06	Method:	EPA 8015		

Lab#	Sample ID	Compound Name		Result ((ug/L)	RDL (ug/L)	
6011706-16	MW-10	Gasoline		290	M	50	_
Date Sampled:	01/16/06	Date Analyzed:	01/21/06		QC Ba	atch: B000512	
Date Received:	01/17/06	Method:	EPA 8015				

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011706-17	MW-27	Gasoline		ND	50
Date Sampled:	01/16/06	Date Analyzed:	01/20/06	QC	Batch: B000512
Date Received:	01/17/06	Method:	EPA 8015		

TPH Gasoline in Water

Lab#	Sample ID MW-28	Compound Name Gasoline		Result (ug/L)	RDL (ug/L)
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/20/06 EPA 8015	QC	Batch: B000512

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)	
6011706-19	MW-33	Gasoline		ND	50	_
Date Sampled:	01/16/06	Date Analyzed:	01/21/06	QC I	Batch: B000512	
Date Received:	01/17/06	Method:	EPA 8015			

			Result (ug/L)	RDL (ug/L)
) Benzene	e		ND	1.0
Toluene	2		ND	1.0
Ethylber	nzene		ND	1.0
m,p-Xyl	lene		ND	1.0
o-Xylen	ne		ND	1.0
Tertiary	Butyl Alcohol (TE	3A)	ND	25
Methyl	tert-Butyl Ether (M	TBE)	1.2	1.0
Di-isopi	ropyl Ether (DIPE)		ND	1.0
Ethyl te	rt-Butyl Ether (ETI	BE)	ND	1.0
Tert-An	nyl Methyl Ether (T	CAME)	ND	1.0
Result (ug/L)	% Recovery	<u></u>	Acceptance Rang	ge (%)
20.2	101		70-130	
20.3	102		70-130	
19.3	96		70-130	
	Date Analyzed:	01/19/06 FPA 8260B	QO	C Batch: B000508
	Ethylbe m,p-Xy o-Xyler Tertiary Methyl Di-isop Ethyl te Tert-An Result (ug/L) 20.2 20.3	Ethylbenzene m,p-Xylene o-Xylene Tertiary Butyl Alcohol (TE Methyl tert-Butyl Ether (M Di-isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETI Tert-Amyl Methyl Ether (T Result (ug/L)	Ethylbenzene m,p-Xylene o-Xylene Tertiary Butyl Alcohol (TBA) Methyl tert-Butyl Ether (MTBE) Di-isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE) Tert-Amyl Methyl Ether (TAME) Result (ug/L) % Recovery 20.2 101 20.3 102 19.3 96 Date Analyzed: 01/19/06	Ethylbenzene m,p-Xylene ND o-Xylene ND Tertiary Butyl Alcohol (TBA) ND Methyl tert-Butyl Ether (MTBE) 1.2 Di-isopropyl Ether (DIPE) ND Ethyl tert-Butyl Ether (ETBE) ND Tert-Amyl Methyl Ether (TAME) ND Result (ug/L) % Recovery Acceptance Range 20.2 101 70-130 20.3 102 70-130 19.3 96 70-130

Lab#	Sample ID	Compo	und Name		Result (ug/L)	RDL (ug/L)
6011706-02	MW-19	Benzene	e		ND	1.0
		Toluene	2		ND	1.0
		Ethylbe	nzene		ND	1.0
		m,p-Xy	lene		ND	1.0
		o-Xylen	ie		ND	1.0
		Tertiary	Butyl Alcohol (T	TBA)	ND	25
		Methyl	tert-Butyl Ether (MTBE)	4.8	1.0
		Di-isopi	ropyl Ether (DIPE	Ε)	ND	1.0
		Ethyl te	rt-Butyl Ether (E	ГВЕ)	ND	1.0
		Tert-An	nyl Methyl Ether	(TAME)	ND	1.0
Sur	rrogates	Result (ug/L)	% Recove	ery	Acceptance Range	2 (%)
Dibromofluorom	ethane	20.1	100		70-130	
Toluene-d8		20.4	102		70-130	
4-Bromofluorobe	enzene	18.9	94		70-130	
Date Sampled:	01/13/06		Date Analyzed:	01/19/06	QC	Batch: B000508
Date Received:	01/17/06		Method:	EPA 8260B		

Lab#	Sample ID	Compo	and Name		Result (ug/L)	RDL (ug/L)
6011706-03	MW-21	Benzene	e		ND	1.0
		Toluene	;		ND	1.0
		Ethylbe	nzene		ND	1.0
		m,p-Xy	lene		ND	1.0
		o-Xylen	ie		ND	1.0
		Tertiary	Butyl Alcohol (7	TBA)	ND	25
		Methyl	tert-Butyl Ether (MTBE)	ND	1.0
		Di-isopi	ropyl Ether (DIPE	Ε)	ND	1.0
		Ethyl te	rt-Butyl Ether (E	ГВЕ)	ND	1.0
		Tert-An	nyl Methyl Ether	(TAME)	ND	1.0
Su	rrogates	Result (ug/L)	% Recove	ery _	Acceptance Range ((%)
Dibromofluoron	nethane	20.2	101		70-130	
Toluene-d8		20.4	102		70-130	
4-Bromofluorob	enzene	18.9	94		70-130	
Date Sampled: Date Received:	01/13/06 01/17/06		Date Analyzed: Method:	01/19/06 EPA 8260B	QC B	Batch: B000508

Lab#	Sample ID	Compou	ind Name		Result (ug/L)	RDL (ug/L)
6011706-04	MW-23	Benzene	;		ND	1.0
		Toluene			ND	1.0
		Ethylber	nzene		ND	1.0
		m,p-Xyl	ene		ND	1.0
		o-Xylene	e		ND	1.0
		Tertiary	Butyl Alcohol (7	ГВА)	ND	25
		Methyl t	ert-Butyl Ether (MTBE)	18	1.0
		Di-isopr	opyl Ether (DIPE	Ε)	ND	1.0
		Ethyl ter	rt-Butyl Ether (E	ГВЕ)	ND	1.0
		Tert-Am	yl Methyl Ether	(TAME)	ND	1.0
Surro	gates	Result (ug/L)	% Recove	ery	Acceptance Range ((%)
Dibromofluorometl	nane	20.2	101		70-130	
Toluene-d8		20.4	102		70-130	
4-Bromofluorobenz	zene	18.6	93		70-130	
Date Sampled: 0	01/13/06		Date Analyzed:	01/20/06	QC E	Batch: B000508
Date Received:	01/17/06		Method:	EPA 8260B		

Lab#	Sample ID	Compou	and Name		Result (ug/L)	RDL (ug/L)
6011706-05	MW-26D	Benzene	.		ND	1.0
		Toluene			ND	1.0
		Ethylber	nzene		ND	1.0
		m,p-Xyl	ene		ND	1.0
		o-Xylen	e		ND	1.0
		Tertiary	Butyl Alcohol (7	TBA)	ND	25
		Methyl t	tert-Butyl Ether (MTBE)	2.0	1.0
		Di-isopr	opyl Ether (DIPE	Ε)	ND	1.0
		Ethyl ter	rt-Butyl Ether (E	ГВЕ)	ND	1.0
		Tert-Am	nyl Methyl Ether	(TAME)	ND	1.0
Sur	rrogates	Result (ug/L)	% Recove	ery _	Acceptance Rang	ge (%)
Dibromofluorom	ethane	20.4	102		70-130	
Toluene-d8		20.3	102		70-130	
4-Bromofluorobe	enzene	19.3	96		70-130	
Date Sampled:	01/13/06		Date Analyzed:	01/19/06	Q	C Batch: B000508
Date Received:	01/17/06		Method:	EPA 8260B		

Lab#	Sample ID	Compo	und Name		Result (ug/L)	RDL (ug/L)
6011706-06	MW-30	Benzen	e		ND	1.0
		Toluene	e		ND	1.0
		Ethylbe	nzene		ND	1.0
		m,p-Xy	lene		ND	1.0
		o-Xylen	ne		ND	1.0
		Tertiary	Tertiary Butyl Alcohol (TBA) Methyl tert-Butyl Ether (MTBE) Di-isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE)		ND	25
		Methyl			1.1	1.0
		Di-isop			ND	1.0
		Ethyl te			ND	1.0
		Tert-An	nyl Methyl Ether	(TAME)	ND	1.0
Sur	rogates	Result (ug/L)	% Recove	ery	Acceptance Range	(%)
Dibromofluorom	ethane	20.3	102	<u>.</u>	70-130	
Toluene-d8		20.3	102		70-130	
4-Bromofluorobe	enzene	18.7	94		70-130	
Date Sampled:	01/13/06		Date Analyzed:	01/19/06	QC	Batch: B000508
Date Received:	01/17/06		Method:	EPA 8260B		

Sample ID Com	pound Name	Result (ug/L)	RDL (ug/L)
MW-31D Benz	ene	ND	1.0
Tolu	ene	ND	1.0
Ethy	lbenzene	ND	1.0
m,p-	Xylene	ND	1.0
o-Xy	lene	ND	1.0
Terti	ary Butyl Alcohol (TBA)	ND	25
Meth	yl tert-Butyl Ether (MTBE)	ND	1.0
Di-is	opropyl Ether (DIPE)	ND	1.0
Ethy	l tert-Butyl Ether (ETBE)	ND	1.0
Tert-	Amyl Methyl Ether (TAME)	ND	1.0
s Result (ug/L	% Recovery	Acceptance Range ((%)
20.4	102	70-130	
20.5	102	70-130	
18.9	94	70-130	
	Date Analyzed: 01/19/06 Method: FPA 8260B	_	Batch: B000508
	MW-31D Benz Tolu Ethy m,p- o-Xy Terti Meth Di-is Ethy Tert- s Result (ug/L 20.4 20.5	MW-31D Benzene Toluene Ethylbenzene m,p-Xylene o-Xylene Tertiary Butyl Alcohol (TBA) Methyl tert-Butyl Ether (MTBE) Di-isopropyl Ether (DIPE) Ethyl tert-Butyl Ether (ETBE) Tert-Amyl Methyl Ether (TAME) S Result (ug/L) 9 Recovery 20.4 102 20.5 102 18.9 94	MW-31D Benzene ND Toluene ND Ethylbenzene ND m,p-Xylene ND o-Xylene ND Tertiary Butyl Alcohol (TBA) ND Methyl tert-Butyl Ether (MTBE) ND Di-isopropyl Ether (DIPE) ND Ethyl tert-Butyl Ether (ETBE) ND Tert-Amyl Methyl Ether (TAME) ND s Result (ug/L) % Recovery Acceptance Range (Company) 20.4 102 70-130 20.5 102 70-130 18.9 94 70-130 706 Date Analyzed: 01/19/06 QC Expression

Lab# Sampl	e ID Compou	and Name	Result (ug/	L) RDL (ug/L)
6011706-08 M V	W-32 Benzene	e	ND	1.0
	Toluene	;	ND	1.0
	Ethylber	nzene	ND	1.0
	m,p-Xyl	lene	ND	1.0
	o-Xylen	e	ND	1.0
	Tertiary	Butyl Alcohol (TBA)	ND	25
	Methyl t	tert-Butyl Ether (MTB	E) 51	1.0
	Di-isopr	ropyl Ether (DIPE)	ND	1.0
	Ethyl ter	rt-Butyl Ether (ETBE)	ND	1.0
	Tert-An	nyl Methyl Ether (TAN	ME) ND	1.0
Surrogates	Result (ug/L)	% Recovery	Acceptanc	e Range (%)
Dibromofluoromethane	20.5	102	70-	-130
Toluene-d8	20.7	104	70	-130
4-Bromofluorobenzene	18.7	94	70	-130
Date Sampled: 01/13/06		Date Analyzed: 01	/19/06	QC Batch: B000508
Date Received: 01/17/06		Method: El	PA 8260B	

Lab#	Sample ID	Compo	und Name		Result (ug/L)	RDL (ug/L)
6011706-09	MW-16D	Benzene	e		ND	1.0
			e		ND	1.0
		Ethylbe	nzene		ND	1.0
		m,p-Xy	lene		ND	1.0
		o-Xylene Tertiary Butyl Alcohol (TBA)			ND	1.0
					ND	25
		Methyl	tert-Butyl Ether (MTBE)	ND	1.0
		Di-isopi	ropyl Ether (DIPE	Ε)	ND	1.0
		Ethyl te	Ethyl tert-Butyl Ether (ETBE)		ND	1.0
		Tert-An	nyl Methyl Ether	(TAME)	ND	1.0
Sur	rrogates	Result (ug/L)	% Recove	ery _	Acceptance Range (%)
Dibromofluorom	ethane	19.9	100		70-130	
Toluene-d8		20.3	102		70-130	
4-Bromofluorobe	enzene	18.8	94		70-130	
Date Sampled:	01/16/06		Date Analyzed:	01/20/06	QC B	atch: B000508
Date Received:	01/17/06		Method:	EPA 8260B		

Lab#	Sample ID	Compou	and Name		Result (ug/L)	RDL (ug/L)
6011706-10	MW-25D	Benzene)		ND	1.0
		Toluene Ethylbenzene			ND	1.0
					ND	1.0
			m,p-Xylene o-Xylene Tertiary Butyl Alcohol (TBA) Methyl tert-Butyl Ether (MTBE) Di-isopropyl Ether (DIPE)			1.0
						1.0
						25
						1.0
						1.0
		Ethyl tert-Butyl Ether (ETBE)			ND	1.0
			nyl Methyl Ether	(TAME)	ND	1.0
Sur	rrogates	Result (ug/L)	% Recove	ery _	Acceptance Range ((%)
Dibromofluorom	ethane	20.1	100		70-130	
Toluene-d8		20.4	102		70-130	
4-Bromofluorobe	enzene	18.6	93		70-130	
Date Sampled:	01/16/06		Date Analyzed:	01/19/06	QC E	Batch: B000508
Date Received:	01/17/06		Method:	EPA 8260B		

Lab#	Sample ID	Compou	and Name		Result (ug/L)	RDL (ug/L)
6011706-11	MW-29D	Benzene	.		ND	1.0
			;		ND	1.0
		Ethylber	nzene		ND	1.0
		m,p-Xyl	lene		ND	1.0
		o-Xylene Tertiary Butyl Alcohol (TBA)			ND	1.0
					ND	25
		Methyl	tert-Butyl Ether (MTBE)	ND	1.0
		Di-isopi	copyl Ether (DIPE	E)	ND	1.0
		Ethyl te	Ethyl tert-Butyl Ether (ETBE)		ND	1.0
		Tert-An	nyl Methyl Ether	(TAME)	ND	1.0
Sur	Surrogates		% Recovery		Acceptance Range (%)
Dibromofluorom	ethane	20.2	101		70-130	
Toluene-d8		20.4	102		70-130	
4-Bromofluorobe	enzene	18.6	93		70-130	
Date Sampled:	01/16/06		Date Analyzed:	01/20/06	QC B	atch: B000508
Date Received:	01/17/06		Method:	EPA 8260B		

Lab#	Sample ID	Compo	und Name		Result (ug/L)	RDL (ug/L)
6011706-12	MW-34	Benzene Toluene Ethylbenzene			ND	1.0
					ND	1.0
					ND	1.0
			m,p-Xylene o-Xylene			1.0
						1.0
		Tertiary Butyl Alcohol (TBA)			ND	25
		Methyl	tert-Butyl Ether (MTBE)	ND	1.0
		Di-isopropyl Ether (DI		Ε)	ND	1.0
		Ethyl te	Ethyl tert-Butyl Ether (ETBE)			1.0
			Tert-Amyl Methyl Ether (TAME)			1.0
Sur	rogates	Result (ug/L)	% Recovery		Acceptance Range	2 (%)
Dibromofluorom	ethane	20.0	100		70-130	
Toluene-d8		20.4	20.4 102		70-130	
4-Bromofluorobe	nzene	18.8	94		70-130	
Date Sampled:	01/16/06		Date Analyzed:	01/20/06	QC	Batch: B000508
Date Received:	01/17/06		Method:	EPA 8260B		

Lab#	Sample ID	Compo	und Name		Result (ug/L)	RDL (ug/L)
6011706-13	MW-35D	Benzene	e		ND	1.0
			e		ND	1.0
		Ethylbe	nzene		ND	1.0
		m,p-Xy	lene		ND	1.0
		o-Xylene Tertiary Butyl Alcohol (TBA)			ND	1.0
					ND	25
		Methyl	tert-Butyl Ether (MTBE)	ND	1.0
		Di-isopi	ropyl Ether (DIPE	E)	ND	1.0
		Ethyl te	Ethyl tert-Butyl Ether (ETBE)		ND	1.0
		Tert-An	nyl Methyl Ether	(TAME)	ND	1.0
Su	Surrogates		% Recovery		Acceptance Range (%)
Dibromofluorom	nethane	20.3	102		70-130	
Toluene-d8		20.4	102		70-130	
4-Bromofluorobo	enzene	18.7	94		70-130	
Date Sampled:	01/16/06		Date Analyzed:	01/20/06	QC B	atch: B000508
Date Received:	01/17/06		Method:	EPA 8260B		

Lab#	Sample ID	Compou	nd Name		Result (ug/L)	RDL (ug/L)
6011706-14	MW-7	Benzene	:		ND	1.0
		Toluene			ND	1.0
			Ethylbenzene m,p-Xylene o-Xylene Tertiary Butyl Alcohol (TBA) Methyl tert-Butyl Ether (MTBE)			1.0
						1.0
						1.0
						25
						1.0
		Di-isopro	opyl Ether (DIPE	Ε)	ND	1.0
		Ethyl ter	t-Butyl Ether (E	ГВЕ)	ND	1.0
	Tert-Ar		myl Methyl Ether (TAME)		ND	1.0
Sur	rogates	Result (ug/L)	% Recove	ery	Acceptance Range ((%)
Dibromofluorom	ethane	20.1	100		70-130	
Toluene-d8		20.4	102		70-130	
4-Bromofluorobe	nzene	18.7	94		70-130	
Date Sampled:	01/16/06		Date Analyzed:	01/20/06	QC E	Batch: B000508
Date Received:	01/17/06		Method:	EPA 8260B		

Lab#	Sample ID	Compou	and Name		Result (ug/L)	RDL (ug/L)
6011706-15	MW-8	Benzene)		ND	1.0
		Toluene	Toluene		ND	1.0
		Ethylber	nzene		ND	1.0
		m,p-Xyl	ene		ND	1.0
		o-Xylene Tertiary Butyl Alcohol (TBA)			ND	1.0
					ND	25
		Methyl t	ert-Butyl Ether (MTBE)	ND	1.0
		Di-isopr	opyl Ether (DIPE	E)	ND	1.0
		Ethyl ter	Ethyl tert-Butyl Ether (ETBE)		ND	1.0
		Tert-Am	nyl Methyl Ether	(TAME)	ND	1.0
Sur	Surrogates		% Recove	ery _	Acceptance Range (%)
Dibromofluorom	ethane	20.1	100		70-130	
Toluene-d8		20.4	102		70-130	
4-Bromofluorobe	enzene	18.6	93		70-130	
Date Sampled:	01/16/06		Date Analyzed:	01/20/06	QC B	atch: B000508
Date Received:	01/17/06		Method:	EPA 8260B		

Volatile Hydrocarbons by GC/MS in Water

Lab#	Sample ID	Compo	und Name		Result (ug/L)	RDL (ug/L)
6011706-16	MW-10	Benzene Toluene			ND	5.0
					ND	5.0
		Ethylbe	enzene		ND	5.0
			m,p-Xylene o-Xylene			5.0
						5.0
		Tertiary Butyl Alcohol (TBA)			ND	120
		Methyl	tert-Butyl Ether (MTBE)	290	5.0
		Di-isop	ropyl Ether (DIPE	Ε)	ND	5.0
			Ethyl tert-Butyl Ether (ETBE) Tert-Amyl Methyl Ether (TAME)			5.0
						5.0
Sur	rogates	Result (ug/L)	% Recove	ery _	Acceptance Range	(%)
Dibromofluorom	ethane	19.8	99		70-130	
Toluene-d8		20.4	102		70-130	
4-Bromofluorobe	enzene	18.4	92		70-130	
Date Sampled:	01/16/06		Date Analyzed:	01/20/06	QC 1	Batch: B000508
Date Received:	01/17/06		Method:	EPA 8260B		

Lab Project#: 6011706 CA Lab Accreditation #: 2303

Lab#	Sample ID	Compo	und Name		Result (ug/L)	RDL (ug/L)
6011706-17	MW-27	Benzene Toluene			ND	1.0
					ND	1.0
			Ethylbenzene m,p-Xylene o-Xylene Tertiary Butyl Alcohol (TBA) Methyl tert-Butyl Ether (MTBE)			1.0
						1.0
						1.0
						25
						1.0
		Di-isop:	Di-isopropyl Ether (DIPE)			1.0
		Ethyl te	ert-Butyl Ether (ET	TBE)	ND	1.0
			Tert-Amyl Methyl Ether (TAME)			1.0
Sui	rrogates	Result (ug/L)	sult (ug/L) % Recovery		Acceptance Rai	nge (%)
Dibromofluorom	ethane	20.3	3 102		70-130	
Toluene-d8		20.6	103		70-130	
4-Bromofluorobe	enzene	18.7	94		70-130	
Date Sampled:	01/16/06		Date Analyzed:	01/20/06	(QC Batch: B000508
Date Received:	01/17/06		Method:	EPA 8260B		

Lab#	Sample ID	Compo	und Name		Result (ug/L)	RDL (ug/L)
6011706-18	MW-28	Benzen	e			1.0
		Toluene	e		ND	1.0
		Ethylbenzene			ND	1.0
			m,p-Xylene o-Xylene Tertiary Butyl Alcohol (TBA)			1.0
						1.0
						25
		Methyl	tert-Butyl Ether (MTBE)	3.1	1.0
		Di-isopropyl Ether (DIPE)		ND	1.0	
		Ethyl te	Ethyl tert-Butyl Ether (ETBE)			1.0
		Tert-Amyl Methyl Ether (TAME)			ND	1.0
Sui	rrogates	Result (ug/L)	% Recovery		Acceptance Rai	nge (%)
Dibromofluorom	ethane	20.3	102		70-130	
Toluene-d8		20.6	103		70-130	
4-Bromofluorobe	enzene	18.7	94		70-130	
Date Sampled:	01/16/06		Date Analyzed:	01/20/06		QC Batch: B000508
Date Received:	01/17/06		Method:	EPA 8260B		

Lab#	Sample ID	Compou	nd Name		Result (ug/L)	RDL (ug/L)
6011706-19	MW-33	Benzene Toluene			ND	1.0
					ND	1.0
			Ethylbenzene m,p-Xylene			1.0
						1.0
		o-Xylene Tertiary Butyl Alcohol (TBA)			ND	1.0
					ND	25
		Methyl t	Methyl tert-Butyl Ether (MTBE)			1.0
		Di-isopropyl Ether (DIPE)			ND	1.0
		Ethyl ter	Ethyl tert-Butyl Ether (ETBE)		ND	1.0
	Tert-Amyl Methyl Ethe		yl Methyl Ether ((TAME)	ND	1.0
Sur	rogates	Result (ug/L)	.) % Recovery		Acceptance Range ((%)
Dibromofluorom	ethane	20.9	104		70-130	
Toluene-d8		20.6	103		70-130	
4-Bromofluorobenzene		19.0	95		70-130	
Date Sampled:	01/16/06		Date Analyzed:	01/20/06	QC E	Batch: B000508
Date Received:	01/17/06		Method:	EPA 8260B		

Methane by GC

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011706-14	MW-7	Methane		14	10
Date Sampled:	01/16/06	Date Analyzed:	01/25/06	QC Batch: B000544	
Date Received:	01/17/06	Method:	RSK 175		

Methane by GC

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)	
6011706-15	MW-8	Methane		ND	10	_
Date Sampled:	01/16/06	Date Analyzed:	01/25/06	QC Batch: B000544		
Date Received:	01/17/06	Method:	RSK 175			

Methane by GC

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011706-16	MW-10	Methane		ND	10
Date Sampled:	01/16/06	Date Analyzed:	01/25/06		QC Batch: B000544
Date Received:	01/17/06	Method:	RSK 175		

Methane by GC

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011706-17	MW-27	Methane		ND	10
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/25/06 RSK 175	QC	Batch: B000544
Date Received:	01/17/06	Method:	RSK 175		

Methane by GC

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)
6011706-18	MW-28	Methane		ND	10
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/25/06 RSK 175		QC Batch: B000544

Methane by GC

Lab#	Sample ID	Compound Name		Result (ug/L)	RDL (ug/L)	
6011706-19	MW-33	Methane		ND	10	_
Date Sampled:	01/16/06	Date Analyzed:	01/25/06	QC	Batch: B000544	
Date Received:	01/17/06	Method:	RSK 175			

Dissolved Metals in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011706-14	MW-7	Manganese (Mn)		3.5	0.10
Date Sampled:	01/16/06	Date Analyzed:	01/24/06		QC Batch: B000481
Date Received:	01/17/06	Method:	EPA 6010B		

Dissolved Metals in Water

Lab#	Sample ID MW-8	Compound Name Manganese (Mn)		Result (mg/L) 0.74	RDL (mg/L) 0.020
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/24/06 EPA 6010B	QC I	Batch: B000481

Dissolved Metals in Water

Lab# 6011706-16	Sample ID MW-10	Compound Name Manganese (Mn)		Result (mg/L) 2.2	RDL (mg/L) 0.10
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/24/06 EPA 6010B	QC	Batch: B000481

Dissolved Metals in Water

Lab# 6011706-17	Sample ID MW-27	Compound Name Manganese (Mn)		Result (mg/L) 0.22	RDL (mg/L) 0.020
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/24/06 EPA 6010B	QCI	Batch: B000481

Lab Project#: 6011706

Dissolved Metals in Water

Lab#	Sample ID MW-28	Compound Name Manganese (Mn)		Result (mg/L) 0.18	RDL (mg/L) 0.020
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/24/06 EPA 6010B	QC B	atch: B000481

Dissolved Metals in Water

Lab#	Sample ID MW-33	Compound Name Manganese (Mn)		Result (mg/L) 0.53	RDL (mg/L) 0.020
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/24/06 EPA 6010B	QCI	Batch: B000481

Metals in Water

Lab#	Sample ID MW-7	Compound Name Magnesium (Mg)		Result (mg/L)	RDL (mg/L)
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/24/06 EPA 6010B	QCI	Batch: B000481

Metals in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011706-15	MW-8	Magnesium (Mg)		37	1.0
Date Sampled:	01/16/06	Date Analyzed:	01/24/06	QC F	Satch: B000481
Date Received:	01/17/06	Method:	EPA 6010B		

Metals in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011706-16	MW-10	Magnesium (Mg)		100	1.0
Date Sampled:	01/16/06	Date Analyzed:	01/24/06	QC I	Batch: B000481
Date Received:	01/17/06	Method:	EPA 6010B		

Metals in Water

Lab# 6011706-17	Sample ID MW-27	Compound Name Magnesium (Mg)		Result (mg/L) 45	RDL (mg/L) 1.0
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/24/06 EPA 6010B	QCE	Batch: B000481

Metals in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011706-18	MW-28	Magnesium (Mg)		54	1.0
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/24/06 EPA 6010B	Q	C Batch: B000481

Metals in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011706-19	MW-33	Magnesium (Mg)		49	1.0
Date Sampled:	01/16/06	Date Analyzed:	01/24/06	QC	Batch: B000481
Date Received:	01/17/06	Method:	EPA 6010B		

Lab Project#: 6011706

Dissolved CO2 in Water

Lab#	Sample ID	Compound Name		Result (mg CaC03/L)	RDL (mg CaC03/L)
6011706-14	MW-7	Total Alkalinity		690	5.0
		pН		6.9	1.0
		Free C02 by calculation		190	5.0
Date Sampled:	01/16/06	Date Analyzed:	01/24/06	QC Batch: B000538	
Date Received:	01/17/06	Method:	SM 4500		

Dissolved CO2 in Water

Lab#	Sample ID	Compound Name		Result (mg CaC03/L)	RDL (mg CaC03/L)
6011706-15	MW-8	Total Alkalinity pH Free C02 by calculation		270 6.9 69	5.0 1.0 5.0
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/24/06 SM 4500	QC I	Batch: B000538

Dissolved CO2 in Water

Lab#	Sample ID	Compound Name		Result (mg CaC03/L)	RDL (mg CaC03/L)
6011706-16	MW-10	Total Alkalinity		750	5.0
		pН		6.9	1.0
		Free C02 by calculation		210	5.0
Date Sampled:	01/16/06	Date Analyzed:	01/24/06	QC Batch: B000538	
Date Received:	01/17/06	Method:	SM 4500		

Dissolved CO2 in Water

Lab#	Sample ID	Compound Name		Result (mg CaC03/L)	RDL (mg CaC03/L)
6011706-17	MW-27	Total Alkalinity		270	5.0
		pН		7.4	1.0
		Free C02 by calculation		24	5.0
Date Sampled:	01/16/06	Date Analyzed:	01/24/06	QC E	Batch: B000538
Date Received:	01/17/06	Method:	SM 4500		

Dissolved CO2 in Water

Lab#	Sample ID	Compound Name		Result (mg CaC03/L)	RDL (mg CaC03/L)
6011706-18	MW-28	Total Alkalinity pH Free C02 by calculation		430 7.1 72	5.0 1.0 5.0
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/24/06 SM 4500	QC I	Batch: B000538

Dissolved CO2 in Water

Lab#	Sample ID	Compound Name		Result (mg CaC03/L)	RDL (mg CaC03/L)
6011706-19	MW-33	Total Alkalinity		320	5.0
		pН		6.8	1.0
		Free C02 by calculation		91	5.0
Date Sampled:	01/16/06	Date Analyzed:	01/24/06	QC B	atch: B000538
Date Received:	01/17/06	Method:	SM 4500		

Oxygen Reduction Potential (ORP) in Water

Lab#	Sample ID	Compound Name		Result (mV)	RDL (mV)
6011706-14	MW-7	Oxidation Reduction Potential (ORP)		360	0.0
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/17/06 SM 2580		QC Batch: B000498

Oxygen Reduction Potential (ORP) in Water

Lab#	Sample ID	Compound Name		Result (mV)	RDL (mV)
6011706-15	MW-8	Oxidation Reduction Potential (ORP)		330	0.0
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/17/06 SM 2580		QC Batch: B000498

Oxygen Reduction Potential (ORP) in Water

Lab#	Sample ID	Compound Name		Result (mV)	RDL (mV)
6011706-16	MW-10	Oxidation Reduction Potential (ORP)		340	0.0
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/17/06 SM 2580		QC Batch: B000498

Oxygen Reduction Potential (ORP) in Water

Lab#	Sample ID	Compound Name		Result (mV)	RDL (mV)
6011706-17	MW-27	Oxidation Reduction Potential (ORP)		310	0.0
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/17/06 SM 2580		QC Batch: B000498

Oxygen Reduction Potential (ORP) in Water

Lab#	Sample ID	Compound Name		Result (mV)	RDL (mV)
6011706-18	MW-28	Oxidation Reduction Potential (ORP)		320	0.0
Date Sampled:	01/16/06	Date Analyzed: Method:	01/17/06 SM 2580		QC Batch: B000498
Date Received.	01/17/00	Wicthod.	SIVI 2300		

Lab Project#: 6011706

Oxygen Reduction Potential (ORP) in Water

Lab#	Sample ID	Compound Name		Result (mV)	RDL (mV)
6011706-19	MW-33	Oxidation Reduction Potential (ORP)		320	0.0
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/17/06 SM 2580		QC Batch: B000498

Nitrate in Water

Lab#	Sample ID MW-7	Compound Name Nitrate		Result (mg/L) ND	RDL (mg/L) 0.10
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/18/06 EPA 300	QC	Batch: B000501

Nitrate in Water

Lab#	Sample ID MW-8	Compound Name Nitrate		Result (mg/L)	RDL (mg/L) 0.10
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/17/06 EPA 300	QC	C Batch: B000501

Nitrate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)	
6011706-16	MW-10	Nitrate		ND	0.10	_
Date Sampled:	01/16/06	Date Analyzed:	01/17/06	QC	Batch: B000501	
Date Received:	01/17/06	Method:	EPA 300			

Nitrate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011706-17	MW-27	Nitrate		3.3	0.10
Date Sampled:	01/16/06	Date Analyzed:	01/17/06		QC Batch: B000501
Date Received:	01/17/06	Method:	EPA 300		

Nitrate in Water

Lab# 6011706-18	Sample ID MW-28	Compound Name Nitrate		Result (mg/L)	RDL (mg/L) 0.50
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/18/06 EPA 300	QC	Batch: B000501

Nitrate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011706-19	MW-33	Nitrate		12	0.50
Date Sampled:	01/16/06	Date Analyzed:	01/18/06	QC	Batch: B000501
Date Received:	01/17/06	Method:	EPA 300		

Sulfate in Water

			RDL (mg/L)
Sulfate as SO4		93	5.0
Date Analyzed:	01/18/06 EPA 300.0	QC	C Batch: B000501
	Date Analyzed: Method:	•	,

Sulfate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)
6011706-15	MW-8	Sulfate as SO4		65	5.0
Date Sampled:	01/16/06	Date Analyzed:	01/20/06	Q	C Batch: B000501
Date Received:	01/17/06	Method:	EPA 300.0		

Sulfate in Water

Lab# 6011706-16	Sample ID MW-10	Compound Name Sulfate as SO4		Result (mg/L) 57	RDL (mg/L) 5.0	
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/18/06 EPA 300.0	QC I	Batch: B000501	

Sulfate in Water

Lab#	Sample ID	Compound Name			RDL (mg/L)	
6011706-17	MW-27	Sulfate as SO4		46	5.0	
Date Sampled:	01/16/06	Date Analyzed:	01/18/06	QC Batch: B000501		
Date Received:	01/17/06	Method:	EPA 300.0			

Sulfate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)	
6011706-18	MW-28	Sulfate as SO4		54	5.0	
Date Sampled:	01/16/06	Date Analyzed:	01/18/06	QC Batch: B000501		
Date Received:	01/17/06	Method:	EPA 300.0			

Sulfate in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)		
6011706-19	MW-33	Sulfate as SO4	_	84	5.0		
Date Sampled:	01/16/06	Date Analyzed:	01/18/06	QC Batch: B000501			
Date Received:	01/17/06	Method:	EPA 300.0				

Ferrous Iron in Water

Lab# 6011706-14	Sample ID MW-7	Compound Name Ferrous Iron			RDL (mg/L) 0.20
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/17/06 SM 3500	QO	C Batch: B000497

Ferrous Iron in Water

Lab# 6011706-15	Sample ID MW-8	Compound Name Ferrous Iron			RDL (mg/L) 0.20
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/17/06 SM 3500	QC	Batch: B000497

Ferrous Iron in Water

Lab# 6011706-16	Sample ID MW-10	Compound Name Ferrous Iron		Result (mg/L) 0.28	RDL (mg/L) 0.20	
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/17/06 SM 3500	QC	Batch: B000497	

Lab Project#: 6011706

Ferrous Iron in Water

Lab#	Sample ID MW-27	Compound Name Ferrous Iron			RDL (mg/L) 0.20
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/17/06 SM 3500	QC	Batch: B000497

Ferrous Iron in Water

Lab# 6011706-18	Sample ID MW-28	Compound Name Ferrous Iron	-		RDL (mg/L) 0.20
Date Sampled: Date Received:	01/16/06 01/17/06	Date Analyzed: Method:	01/17/06 SM 3500	QCI	Batch: B000497

Ferrous Iron in Water

Lab#	Sample ID	Compound Name		Result (mg/L)	RDL (mg/L)		
6011706-19	MW-33	Ferrous Iron		ND 0.20			
Date Sampled:	01/16/06	Date Analyzed:	01/17/06	QC Batch: B000497			
Date Received:	01/17/06	Method:	SM 3500				

Quality Assurance Report

TPH Gasoline in Water

Analyte	Resu	Reporting lt Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000512 - EPA 5030 GC										
Blank (B000512-BLK1)				Prepared & Analyzed: 01/20/06						
Gasoline	ND	50	ug/L							
Matrix Spike (B000512-MS1)	512-MS1) Source: 6011706-01		Prepared & Analyzed: 01/20/06							
Benzene	10.8	0.50	ug/L	10.0	ND	108	70-130			
Toluene	10.9	0.50	ug/L	10.0	ND	109	70-130			
Ethylbenzene	10.9	0.50	ug/L	10.0	ND	109	70-130			
Xylenes	32.8	1.5	ug/L	30.0	ND	109	70-130			
Matrix Spike Dup (B000512-MSD1)		Source: 6011706	5-01	Prepared	& Analyz	zed: 01/20)/06			
Benzene	10.5	0.50	ug/L	10.0	ND	105	70-130	3	20	
Toluene	10.7	0.50	ug/L	10.0	ND	107	70-130	2	20	
Ethylbenzene	10.8	0.50	ug/L	10.0	ND	108	70-130	0.9	20	
Xylenes	32.3	1.5	ug/L	30.0	ND	108	70-130	0.9	20	

Volatile Hydrocarbons by GC/MS in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000508 - EPA 5030 GC/MS										
Blank (B000508-BLK1)				Prepared	& Analyz	zed: 01/19	0/06			
Benzene	ND	1.0	ug/L	•	_					
Γoluene	ND	1.0	ug/L							
Ethylbenzene	ND	1.0	ug/L							
m,p-Xylene	ND	1.0	ug/L							
o-Xylene	ND	1.0	ug/L							
Tertiary Butyl Alcohol (TBA)	ND	25	ug/L							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	ug/L							
Di-isopropyl Ether (DIPE)	ND	1.0	ug/L							
Ethyl tert-Butyl Ether (ETBE)	ND	1.0	ug/L							
Tert-Amyl Methyl Ether (TAME)	ND	1.0	ug/L							
Surrogate: Dibromofluoromethane	20.2		ug/L	20.0		101	70-130			
Surrogate: Toluene-d8	20.4		ug/L	20.0		102	70-130			
Surrogate: 4-Bromofluorobenzene	19.3		ug/L	20.0		96	70-130			
Matrix Spike (B000508-MS1)		ource: 6011706	5-05	Prepared	& Analyz	zed: 01/19	/06			
1,1-Dichloroethene (1,1-DCE)	26.0	1.0	ug/L	25.0	ND	104	70-130			
Benzene	25.8	1.0	ug/L	25.0	ND	103	70-130			
Trichloroethene (TCE)	25.2	1.0	ug/L	25.0	ND	101	70-130			
Гoluene	25.8	1.0	ug/L	25.0	ND	103	70-130			
Chlorobenzene	24.8	1.0	ug/L	25.0	ND	99	70-130			
Surrogate: Dibromofluoromethane	19.9		ug/L	20.0		100	70-130			
Surrogate: Toluene-d8	20.2		ug/L	20.0		101	70-130			
Surrogate: 4-Bromofluorobenzene	18.6		ug/L	20.0		93	70-130			
Matrix Spike Dup (B000508-MSD1)	Se	ource: 6011706	5-05	Prepared	& Analyz	zed: 01/19	0/06			
1,1-Dichloroethene (1,1-DCE)	25.3	1.0	ug/L	25.0	ND	101	70-130	3	20	
Benzene	25.2	1.0	ug/L	25.0	ND	101	70-130	2	20	
Trichloroethene (TCE)	24.9	1.0	ug/L	25.0	ND	100	70-130	1	20	
Гoluene	25.0	1.0	ug/L	25.0	ND	100	70-130	3	20	
Chlorobenzene	24.0	1.0	ug/L	25.0	ND	96	70-130	3	20	
Surrogate: Dibromofluoromethane	20.0		ug/L	20.0		100	70-130			
Surrogate: Toluene-d8	20.3		ug/L	20.0		102	70-130			
Surrogate: 4-Bromofluorobenzene	18.7		ug/L	20.0		94	70-130			

Methane by GC

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000544 - RSK 175										
Blank (B000544-BLK1)				Prepared	& Analyz	zed: 01/25	5/06			
Methane	ND	10	ug/L							
Blank (B000544-BLK2)				Prepared	& Analyz	zed: 01/25	5/06			
Methane	ND	10	ug/L	·						

Dissolved Metals in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000481 - EPA 3010A										
Blank (B000481-BLK1)				Prepared:	: 01/12/06	Analyze	ed: 01/24/0)6		
Manganese (Mn)	ND	0.020	mg/L							
LCS (B000481-BS1)				Prepared:	: 01/12/06	Analyze	ed: 01/24/0)6		
Manganese (Mn)	0.513	0.020	mg/L	0.500		103	70-130			
LCS Dup (B000481-BSD1)				Prepared:	: 01/12/06	Analyze	ed: 01/24/0)6		
Manganese (Mn)	0.517	0.020	mg/L	0.500		103	70-130	0	20	

Page 32 of 36

Lab Project#: 6011706

CA Lab Accreditation #: 2303

Metals in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000481 - EPA 3010A										
Blank (B000481-BLK1)				Prepared	: 01/12/06	Analyz	ed: 01/24/0)6		
Magnesium (Mg)	ND	0.10	mg/L							
LCS (B000481-BS1)				Prepared	: 01/12/06	Analyz	ed: 01/24/0)6		
Magnesium (Mg)	0.530	0.10	mg/L	0.500		106	70-130			
LCS Dup (B000481-BSD1)				Prepared	: 01/12/06	Analyz	ed: 01/24/0)6		
Magnesium (Mg)	0.499	0.10	mg/L	0.500		100	70-130	6	20	

Nitrate in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000501 - NO PREP										
Blank (B000501-BLK1)				Prepared	: 01/17/06	5 Analyze	ed: 01/18/0)6		
Nitrate	ND	0.10	mg/L	•		•				
LCS (B000501-BS1)				Prepared	: 01/17/06	5 Analyze	ed: 01/18/0)6		
Nitrate	2.03	0.10	mg/L	2.00		102	80-120			
LCS Dup (B000501-BSD1)				Prepared	: 01/17/06	5 Analyz	ed: 01/18/0)6		
Nitrate	1.93	0.10	mg/L	2.00		96	80-120	5	20	

Page 34 of 36

Lab Project#: 6011706

CA Lab Accreditation #: 2303

Sulfate in Water

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B000501 - NO PREP										
Blank (B000501-BLK1)				Prepared	: 01/17/06	5 Analyze	ed: 01/18/0	06		
Sulfate as SO4	ND	0.10	mg/L							
LCS (B000501-BS1)				Prepared	: 01/17/06	5 Analyze	ed: 01/18/0	06		
Sulfate as SO4	2.10	0.10	mg/L	2.00		105	80-120			
LCS Dup (B000501-BSD1)				Prepared	: 01/17/06	5 Analyze	ed: 01/18/0	06		
Sulfate as SO4	2.00	0.10	mg/L	2.00		100	80-120	5	20	

Page 35 of 36

Lab Project#: 6011706

CA Lab Accreditation #: 2303

Notes and Definitions

M The TPH Gasoline result consists primarily of Methyl Tertiary Butyl Ether (MTBE).

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

Page 36 of 36

Lab Project#: 6011706

CA Lab Accreditation #: 2303

P.O. Box 750336, Petaluma, CA 94975-0336 110 Liberty Street, Petaluma, CA 94952 (707) 769-3128 **Analytical Sciences**

CHAIN OF CUSTODY

GEOTRACKER EDF: Y COOLER TEMPERATURE ပွ de McCAPFERY 01203335,00 ILE GLOBAL ID: ၁၀၁ TURNAROUND TIME (check one) NORMAL 72 Hours 24 Hours SCS ENGINEERS PROJECT NAME: LAB PROJECT NUMBER: SCS ENGINEERS PROJECT NUMBER: 48 Hours SAME DAY 5 DAYS MOBILE LAB COMPANY NAME: JE MCCAFFERTO SANTA ROSA, CA9540 ROAD CONTACT: JIM MCCAFEERY PHONE#: 707- 769- 44+2 BILLING INFORMATION 7000 Address: 365 FAX #: ADDRESS: 3645 WESTWIND BOULEVARD SANTA ROSA, CA 95403 **CLIENT INFORMATION** COMPANY NAME: SCS ENGINEERS PHONE#: (707) 546-9461 FAX #: (707) 544-5769

CONTACT:

, Р

PAGE

ANALYSIS

L					I		STATE STATE AND ADDRESS.	See the contract of		CAST OF THE PARTY OF THE PARTY.	PACKAGE TRACESTO		Control Control	26.20	100	をいたないというない	1000000000000000000000000000000000000	The second secon	
ITEM	CLIENT SAMPLE ID.	DATE SAMPLED	TIME	MATRIX	cont.	PRESV.	THYGEAS/PTEX 8, MTBE EPA 8015M/8020	V DIESEL / MOTOR OIL M2108 AGB M2108 AGB	HYDROCARBONS EPA 8260 (FULL LIST) EPA 8260 FUII LIST	+ Oxy / Fuel Additives BTEX & OXYGENATES + PB SOAVENGERS + PB SOAVENGERS	OXYGENATED OXYGENATED FUEL ADDITIVES FUEL ADDITIVES FUEL S260M	CHLORINATED SOLVENTS	SEMINOLATILE HYDROCARBOUS OTES ASTO	M1.814 A43 \ 7055 MS	EPA 8081 / 8141 / 8082 PESTICIDES / PCB'S	CAM 17 METALS 5 LUFT METALS	TOTAL LEAD	COMMENTS	LAB SAMPLE #
-	0 LI - JUM	1-13-06 1615	1615	בומ	3	76.5	1	7 85		7						-		201109	o I
7	MW - 19	-	1145	-	-		_									_			3
က	MM-21		1520													-	-		
4	MW-25		1430														_		7 73
10	MM-26 D		2021													-	-		30.
9	MM-30		5221										*			_			,00
7	MM-31 D		1315												T	 	-		t 9 r
∞	MW-32	→ [0011																- 0K 0
6	MM-160	1-16-06 0850	0850													-			3
9	MW-25D		0945												_				0
1	MM-29 D	^	1520	→	→	~	>			>							-	Þ	7
					Section 1			9	SIGNATURES	URES									
REL	RELINQUISHED BY: \mathcal{RL} \mathcal{E}	Enl	ş		DATE:: 1-16	2-91-	-06	TIME:					-						
REC	RECEIVED BY:				DATE::			TIME:			REGIL	ESHIVED BY LABORATOR	LABOR	ATORY	,			1 1.	
RE	RELINQUISHED BY:				DATE::			TIME:		<u> </u>	\	1		Jul	, 77 (17)			10/11/	[0:27
REC	RECEIVED BY:		10000		DATE:			TIME:			SIGNATURE	Æ						DATE	TIME

Analytical Sciences
P.O. Box 750336, Petaluma, CA 94975-0336
110 Liberty Street, Petaluma, CA 94952
(707) 769-3128

CHAIN OF CUSTODY

(0:27 LAB SAMPLE Ħ 11-2/2 0 12 1 7 9 COOLER TEMPERATURE GEOTRACKER EDF: * COMMENTS DISSOLVED COL JE MCCAFFERY 40 460 May Hay, CHA 01803555,00 601170 GLOBAL ID: 1/17/06 DATE ၁၀၁ PAGE TURNAROUND TIME (check one) 24 Hours 72 Hours NORMAL TOTAL LEAD SCS ENGINEERS PROJECT NAME: SCS ENGINEERS PROJECT NUMBER: CAM 17 METALS / 5 LUFT METALS PESTICIDES / PCB'S REGENED BY LABORATORY TRPH / TOG SEMI-VOLATILE
HYDROCARBONS
OTS AGE 48 Hours 5 DAYS MOBILE LAB SAME DAY ANALYSIS CHLORINATED SOLVENTS W/and SIGNATURE FUEL ADDITIVES
EPA 8260M OXYGENATED ROSA, CA9SE JE MCCAFFRY CO CONTACT: JIM MCCAFFERY BTEX & OXYGENATES

*PB SCAYENGERS

EPA \$260B SIGNATURES BILLING INFORMATION 4412 TODD + Oxy / Fuel Additives EPA 8260 Full List HYDROCARBONS EPA 8260 (FULL LIST) - 769-VOLATILE SALTA TIME TIME: TIME: 595 TPH DIESEL / MOTOR OIL M2108 A93 101 TPH/GAS/DTEK & MTBE EPA 8015M/8020 COMPANY NAME: 200 ADDRESS: PHONE#: FAX#: 765 PRESV. YES/NO 7/2 K CONT. DATE:: DATE:: DATE: 3 M MATRIX L10 3645 WESTWIND BOULEVARD SANTA ROSA, CA 95403 040 000 I WE 125 200 0800 400 1335 111 **SLIENT INFORMATION** DATE SAMPLED -16-06 SCS ENGINEERS PHONE#: (707) 546-9461 (707) 544-5769 CLIENT SAMPLE I..D. - 35 MW-33 MW- 27 MM-28 MW - 10 MM-8 COMPANY NAME: ADDRESS: FAX#: RELINQUISHED BY: CONTACT: RELINQUISHED BY: スロ アア アア RECEIVED BY: RECEIVED BY: TEM 9 3 40 9 œ O